These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30267301)

  • 1. A highly efficient and cost-effective recombinant production of a bacterial photolyase from the Antarctic isolate Hymenobacter sp. UV11.
    Marizcurrena JJ; Martínez-López W; Ma H; Lamparter T; Castro-Sowinski S
    Extremophiles; 2019 Jan; 23(1):49-57. PubMed ID: 30267301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A natural occurring bifunctional CPD/(6-4)-photolyase from the Antarctic bacterium Sphingomonas sp. UV9.
    Marizcurrena JJ; Acosta S; Canclini L; Hernández P; Vallés D; Lamparter T; Castro-Sowinski S
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):7037-7050. PubMed ID: 32572574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photo-repair effect of a bacterial Antarctic CPD-photolyase on UVC-induced DNA lesions in human keratinocytes.
    Acosta S; Canclini L; Marizcurrena JJ; Castro-Sowinski S; Hernández P
    Environ Toxicol Pharmacol; 2022 Nov; 96():104001. PubMed ID: 36273708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Searching for novel photolyases in UVC-resistant Antarctic bacteria.
    Marizcurrena JJ; Morel MA; Braña V; Morales D; Martinez-López W; Castro-Sowinski S
    Extremophiles; 2017 Mar; 21(2):409-418. PubMed ID: 28190121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A (6-4)-photolyase from the Antarctic bacterium Sphingomonas sp. UV9: recombinant production and in silico features.
    Marizcurrena JJ; Lamparter T; Castro-Sowinski S
    Extremophiles; 2020 Nov; 24(6):887-896. PubMed ID: 32960344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Powerful skin cancer protection by a CPD-photolyase transgene.
    Jans J; Schul W; Sert YG; Rijksen Y; Rebel H; Eker AP; Nakajima S; van Steeg H; de Gruijl FR; Yasui A; Hoeijmakers JH; van der Horst GT
    Curr Biol; 2005 Jan; 15(2):105-15. PubMed ID: 15668165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of liquid chromatography tandem mass spectrometry method to quantify cyclobutane pyrimidine dimer photolyase activity by detection of 15mer oligonucleotide as reaction product.
    Vallejos-Almirall A; Folch-Cano C; Rosas A; Vergara C
    J Chromatogr A; 2020 Jan; 1611():460577. PubMed ID: 31591040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity.
    Selby CP; Sancar A
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17696-700. PubMed ID: 17062752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flavin adenine dinucleotide as a chromophore of the Xenopus (6-4)photolyase.
    Todo T; Kim ST; Hitomi K; Otoshi E; Inui T; Morioka H; Kobayashi H; Ohtsuka E; Toh H; Ikenaga M
    Nucleic Acids Res; 1997 Feb; 25(4):764-8. PubMed ID: 9016626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photolyase Production and Current Applications: A Review.
    Ramírez-Gamboa D; Díaz-Zamorano AL; Meléndez-Sánchez ER; Reyes-Pardo H; Villaseñor-Zepeda KR; López-Arellanes ME; Sosa-Hernández JE; Coronado-Apodaca KG; Gámez-Méndez A; Afewerki S; Iqbal HMN; Parra-Saldivar R; Martínez-Ruiz M
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of rice cyclobutane pyrimidine dimer photolyase into mitochondria relies on a targeting sequence located in its C-terminal internal region.
    Takahashi S; Teranishi M; Izumi M; Takahashi M; Takahashi F; Hidema J
    Plant J; 2014 Sep; 79(6):951-63. PubMed ID: 24947012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient removal of cyclobutane pyrimidine dimers in barley: differential contribution of light-dependent and dark DNA repair pathways.
    Manova V; Georgieva R; Borisov B; Stoilov L
    Physiol Plant; 2016 Oct; 158(2):236-53. PubMed ID: 27021252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification, cDNA cloning, and expression profiles of the cyclobutane pyrimidine dimer photolyase of Xenopus laevis.
    Tanida H; Tahara E; Mochizuki M; Yamane Y; Ryoji M
    FEBS J; 2005 Dec; 272(23):6098-108. PubMed ID: 16302973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of a type III photolyase from Caulobacter crescentus.
    Oztürk N; Kao YT; Selby CP; Kavakli IH; Partch CL; Zhong D; Sancar A
    Biochemistry; 2008 Sep; 47(39):10255-61. PubMed ID: 18771290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Class II CPD Photolyase and a 6-4 Photolyase with Photorepair Activity from the Antarctic Moss Pohlia nutans M211.
    An M; Qu C; Miao J; Sha Z
    Photochem Photobiol; 2021 Nov; 97(6):1527-1533. PubMed ID: 34166538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of CPD Photolyase Nanoliposomes Derived from Antarctic Microalgae and Their Effect on UVB-Induced Skin Damage in Mice.
    Qu C; Li N; Liu T; He Y; Miao J
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneously occurring mutations in the cyclobutane pyrimidine dimer photolyase gene cause different sensitivities to ultraviolet-B in rice.
    Hidema J; Teranishi M; Iwamatsu Y; Hirouchi T; Ueda T; Sato T; Burr B; Sutherland BM; Yamamoto K; Kumagai T
    Plant J; 2005 Jul; 43(1):57-67. PubMed ID: 15960616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclobutane pyrimidine dimers photolyase from extremophilic microalga: remarkable UVB resistance and efficient DNA damage repair.
    Li C; Ma L; Mou S; Wang Y; Zheng Z; Liu F; Qi X; An M; Chen H; Miao J
    Mutat Res; 2015 Mar; 773():37-42. PubMed ID: 25769185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increase in CPD photolyase activity functions effectively to prevent growth inhibition caused by UVB radiation.
    Hidema J; Taguchi T; Ono T; Teranishi M; Yamamoto K; Kumagai T
    Plant J; 2007 Apr; 50(1):70-9. PubMed ID: 17397507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residues at a Single Site Differentiate Animal Cryptochromes from Cyclobutane Pyrimidine Dimer Photolyases by Affecting the Proteins' Preferences for Reduced FAD.
    Xu L; Wen B; Wang Y; Tian C; Wu M; Zhu G
    Chembiochem; 2017 Jun; 18(12):1129-1137. PubMed ID: 28393477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.