BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 30267646)

  • 1. Emerging roles of ADP-ribosyl-acceptor hydrolases (ARHs) in tumorigenesis and cell death pathways.
    Bu X; Kato J; Moss J
    Biochem Pharmacol; 2019 Sep; 167():44-49. PubMed ID: 30267646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases.
    Mashimo M; Kato J; Moss J
    DNA Repair (Amst); 2014 Nov; 23():88-94. PubMed ID: 24746921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ARH Family of ADP-Ribose-Acceptor Hydrolases.
    Ishiwata-Endo H; Kato J; Yamashita S; Chea C; Koike K; Lee DY; Moss J
    Cells; 2022 Nov; 11(23):. PubMed ID: 36497109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Role of ADP-Ribosyl-Acceptor Hydrolase 3 in poly(ADP-Ribose) Polymerase-1 Response to Oxidative Stress.
    Mashimo M; Moss J
    Curr Protein Pept Sci; 2016; 17(7):633-640. PubMed ID: 27090906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase.
    Oka S; Kato J; Moss J
    J Biol Chem; 2006 Jan; 281(2):705-13. PubMed ID: 16278211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ARH and Macrodomain Families of α-ADP-ribose-acceptor Hydrolases Catalyze α-NAD
    Stevens LA; Kato J; Kasamatsu A; Oda H; Lee DY; Moss J
    ACS Chem Biol; 2019 Dec; 14(12):2576-2584. PubMed ID: 31599159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ADP-Ribosyl-Acceptor Hydrolase Activities Catalyzed by the ARH Family of Proteins.
    Mashimo M; Moss J
    Methods Mol Biol; 2018; 1813():187-204. PubMed ID: 30097868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of human ADP-ribosyl-acceptor hydrolase 3 bound to ADP-ribose reveals a conformational switch that enables specific substrate recognition.
    Pourfarjam Y; Ventura J; Kurinov I; Cho A; Moss J; Kim IK
    J Biol Chem; 2018 Aug; 293(32):12350-12359. PubMed ID: 29907568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and biochemical analysis of human ADP-ribosyl-acceptor hydrolase 3 reveals the basis of metal selectivity and different roles for the two magnesium ions.
    Pourfarjam Y; Ma Z; Kurinov I; Moss J; Kim IK
    J Biol Chem; 2021; 296():100692. PubMed ID: 33894202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of O-acetyl-ADP-ribose isomers by ADP-ribosylhydrolase 3.
    Kasamatsu A; Nakao M; Smith BC; Comstock LR; Ono T; Kato J; Denu JM; Moss J
    J Biol Chem; 2011 Jun; 286(24):21110-7. PubMed ID: 21498885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PARP1 inhibition alleviates injury in ARH3-deficient mice and human cells.
    Mashimo M; Bu X; Aoyama K; Kato J; Ishiwata-Endo H; Stevens LA; Kasamatsu A; Wolfe LA; Toro C; Adams D; Markello T; Gahl WA; Moss J
    JCI Insight; 2019 Feb; 4(4):. PubMed ID: 30830864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life.
    Perina D; Mikoč A; Ahel J; Ćetković H; Žaja R; Ahel I
    DNA Repair (Amst); 2014 Nov; 23():4-16. PubMed ID: 24865146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases.
    Ono T; Kasamatsu A; Oka S; Moss J
    Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16687-91. PubMed ID: 17075046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress.
    Mashimo M; Kato J; Moss J
    Proc Natl Acad Sci U S A; 2013 Nov; 110(47):18964-9. PubMed ID: 24191052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose).
    Niere M; Mashimo M; Agledal L; Dölle C; Kasamatsu A; Kato J; Moss J; Ziegler M
    J Biol Chem; 2012 May; 287(20):16088-102. PubMed ID: 22433848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced sensitivity to cholera toxin in female ADP-ribosylarginine hydrolase (ARH1)-deficient mice.
    Watanabe K; Kato J; Zhu J; Oda H; Ishiwata-Endo H; Moss J
    PLoS One; 2018; 13(11):e0207693. PubMed ID: 30500844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are PARPs promiscuous?
    Feijs KLH; Žaja R
    Biosci Rep; 2022 May; 42(5):. PubMed ID: 35380161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (ADP-ribosyl)hydrolases: Structural Basis for Differential Substrate Recognition and Inhibition.
    Rack JGM; Ariza A; Drown BS; Henfrey C; Bartlett E; Shirai T; Hergenrother PJ; Ahel I
    Cell Chem Biol; 2018 Dec; 25(12):1533-1546.e12. PubMed ID: 30472116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective monitoring of the protein-free ADP-ribose released by ADP-ribosylation reversal enzymes.
    Kasson S; Dharmapriya N; Kim IK
    PLoS One; 2021; 16(6):e0254022. PubMed ID: 34191856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(ADP-ribose): PARadigms and PARadoxes.
    Bürkle A; Virág L
    Mol Aspects Med; 2013 Dec; 34(6):1046-65. PubMed ID: 23290998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.