BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30267674)

  • 1. Exploring Oxidation State-Dependent Selectivity in Polymerization of Cyclic Esters and Carbonates with Zinc(II) Complexes.
    Abubekerov M; Vlček V; Wei J; Miehlich ME; Quan SM; Meyer K; Neuhauser D; Diaconescu PL
    iScience; 2018 Sep; 7():120-131. PubMed ID: 30267674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-Switchable Ring-Opening Polymerization with Ferrocene Derivatives.
    Wei J; Diaconescu PL
    Acc Chem Res; 2019 Feb; 52(2):415-424. PubMed ID: 30707548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ring-opening polymerization of cyclic esters and trimethylene carbonate catalyzed by aluminum half-salen complexes.
    Darensbourg DJ; Karroonnirun O; Wilson SJ
    Inorg Chem; 2011 Jul; 50(14):6775-87. PubMed ID: 21675736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High activity of an indium alkoxide complex toward ring opening polymerization of cyclic esters.
    Quan SM; Diaconescu PL
    Chem Commun (Camb); 2015 Jun; 51(47):9643-6. PubMed ID: 25973852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indium Catalysts for Ring Opening Polymerization: Exploring the Importance of Catalyst Aggregation.
    Osten KM; Mehrkhodavandi P
    Acc Chem Res; 2017 Nov; 50(11):2861-2869. PubMed ID: 29087695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of ligand redox non-innocence in ring-opening polymerization reactions catalysed by bis(imino)pyridine iron alkoxide complexes.
    Delle Chiaie KR; Biernesser AB; Ortuño MA; Dereli B; Iovan DA; Wilding MJT; Li B; Cramer CJ; Byers JA
    Dalton Trans; 2017 Oct; 46(38):12971-12980. PubMed ID: 28932853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox control of a ring-opening polymerization catalyst.
    Broderick EM; Guo N; Vogel CS; Xu C; Sutter J; Miller JT; Meyer K; Mehrkhodavandi P; Diaconescu PL
    J Am Chem Soc; 2011 Jun; 133(24):9278-81. PubMed ID: 21604745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heteroleptic tin(II) initiators for the ring-opening (co)polymerization of lactide and trimethylene carbonate: mechanistic insights from experiments and computations.
    Wang L; Kefalidis CE; Sinbandhit S; Dorcet V; Carpentier JF; Maron L; Sarazin Y
    Chemistry; 2013 Sep; 19(40):13463-78. PubMed ID: 23955851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordination Ring-Opening Polymerization of Cyclic Esters: A Critical Overview of DFT Modeling and Visualization of the Reaction Mechanisms.
    Nifant'ev I; Ivchenko P
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31739538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid scorpionate/cyclopentadienyl magnesium and zinc complexes: synthesis, coordination chemistry, and ring-opening polymerization studies on cyclic esters.
    Garcés A; Sánchez-Barba LF; Alonso-Moreno C; Fajardo M; Fernández-Baeza J; Otero A; Lara-Sánchez A; López-Solera I; Rodríguez AM
    Inorg Chem; 2010 Mar; 49(6):2859-71. PubMed ID: 20146427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ring-Opening Polymerization of
    Impemba S; Manca G; Tozio I; Milione S
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. P,O-Phosphinophenolate zinc(II) species: synthesis, structure and use in the ring-opening polymerization (ROP) of lactide, ε-caprolactone and trimethylene carbonate.
    Fliedel C; Rosa V; Alves FM; Martins AM; Avilés T; Dagorne S
    Dalton Trans; 2015 Jul; 44(27):12376-87. PubMed ID: 25847079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormal N-heterocyclic carbene main group organometallic chemistry: a debut to the homogeneous catalysis.
    Sen TK; Sau SC; Mukherjee A; Hota PK; Mandal SK; Maity B; Koley D
    Dalton Trans; 2013 Oct; 42(39):14253-60. PubMed ID: 23945705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introduction of abnormal N-heterocyclic carbene as an efficient organocatalyst: ring opening polymerization of cyclic esters.
    Sen TK; Sau SCh; Mukherjee A; Modak A; Mandal SK; Koley D
    Chem Commun (Camb); 2011 Nov; 47(43):11972-4. PubMed ID: 21964160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic Insight into the Ring-Opening Polymerization of
    Lin YF; Jheng NY
    Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31546919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remarkable effect of alkali metal on polymerization of cyclic esters catalyzed by samarium-alkali metal multinuclear alkoxide clusters.
    Sheng H; Shi J; Feng Y; Wang H; Jiao Y; Sheng H; Zhang Y; Shen Q
    Dalton Trans; 2012 Aug; 41(30):9232-40. PubMed ID: 22733088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Block Copolymerization of Lactide and an Epoxide Facilitated by a Redox Switchable Iron-Based Catalyst.
    Biernesser AB; Delle Chiaie KR; Curley JB; Byers JA
    Angew Chem Int Ed Engl; 2016 Apr; 55(17):5251-4. PubMed ID: 26991820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox control of group 4 metal ring-opening polymerization activity toward L-lactide and ε-caprolactone.
    Wang X; Thevenon A; Brosmer JL; Yu I; Khan SI; Mehrkhodavandi P; Diaconescu PL
    J Am Chem Soc; 2014 Aug; 136(32):11264-7. PubMed ID: 25062499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination of substitutionally inert phenolate ligands to lanthanide(II) and (III) compounds--catalysts for ring-opening polymerization of cyclic esters.
    Binda PI; Delbridge EE; Abrahamson HB; Skelton BW
    Dalton Trans; 2009 Apr; (15):2777-87. PubMed ID: 19333501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Alkoxide Initiator, Spin State, and Oxidation State in Ring-Opening Polymerization of ε-Caprolactone Catalyzed by Iron Bis(imino)pyridine Complexes.
    Ortuño MA; Dereli B; Chiaie KRD; Biernesser AB; Qi M; Byers JA; Cramer CJ
    Inorg Chem; 2018 Feb; 57(4):2064-2071. PubMed ID: 29381341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.