These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30267736)

  • 1. Modelling the motion of clusters of cells in a viscous fluid using the boundary integral method.
    Harris PJ
    Math Biosci; 2018 Dec; 306():145-151. PubMed ID: 30267736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pattern formation in multiphase models of chemotactic cell aggregation.
    Green JEF; Whiteley JP; Oliver JM; Byrne HM; Waters SL
    Math Med Biol; 2018 Sep; 35(3):319-346. PubMed ID: 28520976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple mathematical model of cell clustering by chemotaxis.
    Harris PJ
    Math Biosci; 2017 Dec; 294():62-70. PubMed ID: 29042211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An alternative smooth particle hydrodynamics formulation to simulate chemotaxis in porous media.
    Avesani D; Dumbser M; Chiogna G; Bellin A
    J Math Biol; 2017 Apr; 74(5):1037-1058. PubMed ID: 27568012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model of cell movement and clustering due to chemotaxis.
    Farmer A; Harris PJ
    J Theor Biol; 2023 Nov; 575():111646. PubMed ID: 37852358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-fluid model of biofilm disinfection.
    Cogan NG
    Bull Math Biol; 2008 Apr; 70(3):800-19. PubMed ID: 18071827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear studies of tumor morphological stability using a two-fluid flow model.
    Pham K; Turian E; Liu K; Li S; Lowengrub J
    J Math Biol; 2018 Sep; 77(3):671-709. PubMed ID: 29546457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic flow of non-Newtonian power-law fluid past a moving wedge or a stretching sheet: a unified computational approach.
    Kudenatti RB; Misbah NE
    Sci Rep; 2020 Jun; 10(1):9445. PubMed ID: 32523026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microscale model of bacterial swimming, chemotaxis and substrate transport.
    Dillon R; Fauci L; Gaver D
    J Theor Biol; 1995 Dec; 177(4):325-40. PubMed ID: 8871472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible role of contact following in the generation of coherent motion of Dictyostelium cells.
    Umeda T; Inouye K
    J Theor Biol; 2002 Dec; 219(3):301-8. PubMed ID: 12419659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the parameterised finite element method to robustly and efficiently evolve the edge of a moving cell.
    Neilson MP; Mackenzie JA; Webb SD; Insall RH
    Integr Biol (Camb); 2010 Nov; 2(11-12):687-95. PubMed ID: 20959932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation.
    Cheng L; Li Y; Grosh K
    J Comput Phys; 2013 Aug; 247():248-261. PubMed ID: 23729844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the Potential for Dissolution Simulation to Explore the Effects of Medium Viscosity on Particulate Dissolution.
    D'Arcy DM; Persoons T
    AAPS PharmSciTech; 2019 Jan; 20(2):47. PubMed ID: 30617668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscous flow past a collapsible channel as a model for self-excited oscillation of blood vessels.
    Tang C; Zhu L; Akingba G; Lu XY
    J Biomech; 2015 Jul; 48(10):1922-9. PubMed ID: 25911249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation of chemotactic organisms in a differential flow.
    Muñoz-García J; Neufeld Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061902. PubMed ID: 20365185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex Far-Field Geometries Determine the Stability of Solid Tumor Growth with Chemotaxis.
    Lu MJ; Liu C; Lowengrub J; Li S
    Bull Math Biol; 2020 Mar; 82(3):39. PubMed ID: 32166456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelength Selection in Gyrotactic Bioconvection.
    Ghorai S; Singh R; Hill NA
    Bull Math Biol; 2015 Jun; 77(6):1166-84. PubMed ID: 25963246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multiple-relaxation-time lattice-boltzmann model for bacterial chemotaxis: effects of initial concentration, diffusion, and hydrodynamic dispersion on traveling bacterial bands.
    Yan Z; Hilpert M
    Bull Math Biol; 2014 Oct; 76(10):2449-75. PubMed ID: 25223537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.