These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
653 related articles for article (PubMed ID: 30267962)
21. Potential Antimicrobial and Antibiofilm Properties of Copper Oxide Nanoparticles: Time-Kill Kinetic Essay and Ultrastructure of Pathogenic Bacterial Cells. Shehabeldine AM; Amin BH; Hagras FA; Ramadan AA; Kamel MR; Ahmed MA; Atia KH; Salem SS Appl Biochem Biotechnol; 2023 Jan; 195(1):467-485. PubMed ID: 36087233 [TBL] [Abstract][Full Text] [Related]
22. Comparative in situ ROS mediated killing of bacteria with bulk analogue, Eucalyptus leaf extract (ELE)-capped and bare surface copper oxide nanoparticles. Ali K; Ahmed B; Ansari SM; Saquib Q; Al-Khedhairy AA; Dwivedi S; Alshaeri M; Khan MS; Musarrat J Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():747-758. PubMed ID: 30948112 [TBL] [Abstract][Full Text] [Related]
23. Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. Rajeshkumar S; Menon S; Venkat Kumar S; Tambuwala MM; Bakshi HA; Mehta M; Satija S; Gupta G; Chellappan DK; Thangavelu L; Dua K J Photochem Photobiol B; 2019 Aug; 197():111531. PubMed ID: 31212244 [TBL] [Abstract][Full Text] [Related]
24. Biosynthesis of copper oxide nanoparticles using Rubia cordifolia bark extract: characterization, antibacterial, antioxidant, larvicidal and photocatalytic activities. Vinothkanna A; Mathivanan K; Ananth S; Ma Y; Sekar S Environ Sci Pollut Res Int; 2023 Mar; 30(15):42563-42574. PubMed ID: 35175521 [TBL] [Abstract][Full Text] [Related]
25. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaves extract and their evaluation of antibacterial, anticancer in human A549 lung and MDA-MB-231 breast cancer cells. Sathiyavimal S; F Durán-Lara E; Vasantharaj S; Saravanan M; Sabour A; Alshiekheid M; Lan Chi NT; Brindhadevi K; Pugazhendhi A Food Chem Toxicol; 2022 Oct; 168():113330. PubMed ID: 35926645 [TBL] [Abstract][Full Text] [Related]
26. Nanotitania crystals induced efficient photocatalytic color degradation, antimicrobial and larvicidal activity. Udayabhanu J; Kannan V; Tiwari M; Natesan G; Giovanni B; Perumal V J Photochem Photobiol B; 2018 Jan; 178():496-504. PubMed ID: 29241121 [TBL] [Abstract][Full Text] [Related]
27. Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy. Patra JK; Das G; Baek KH J Photochem Photobiol B; 2016 Aug; 161():200-10. PubMed ID: 27261701 [TBL] [Abstract][Full Text] [Related]
28. Facile approach for large-scale production of metal and metal oxide nanoparticles and preparation of antibacterial cotton pads. Shankar S; Rhim JW Carbohydr Polym; 2017 May; 163():137-145. PubMed ID: 28267490 [TBL] [Abstract][Full Text] [Related]
30. In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Fouda A; El-Din Hassan S; Salem SS; Shaheen TI Microb Pathog; 2018 Dec; 125():252-261. PubMed ID: 30240818 [TBL] [Abstract][Full Text] [Related]
31. Green and cost effective synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties. Tripathi D; Modi A; Narayan G; Rai SP Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():152-164. PubMed ID: 30948049 [TBL] [Abstract][Full Text] [Related]
32. Antioxidant, antiglycation, and antibacterial of copper oxide nanoparticles synthesized using Caesalpinia Sappan extract. Sasarom M; Wanachantararak P; Chaijareenont P; Okonogi S Drug Discov Ther; 2024 Jul; 18(3):167-177. PubMed ID: 38945877 [TBL] [Abstract][Full Text] [Related]
33. Evaluation of antibacterial activity of plant mediated CaO nanoparticles using Cissus quadrangularis extract. Marquis G; Ramasamy B; Banwarilal S; Munusamy AP J Photochem Photobiol B; 2016 Feb; 155():28-33. PubMed ID: 26723000 [TBL] [Abstract][Full Text] [Related]
34. Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method. M S; K B; M B; S J; S A; A S; P N; R S J Photochem Photobiol B; 2017 Jun; 171():117-124. PubMed ID: 28501689 [TBL] [Abstract][Full Text] [Related]
36. Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. Angel Ezhilarasi A; Judith Vijaya J; Kaviyarasu K; John Kennedy L; Ramalingam RJ; Al-Lohedan HA J Photochem Photobiol B; 2018 Mar; 180():39-50. PubMed ID: 29413700 [TBL] [Abstract][Full Text] [Related]
37. Synergistic Antibacterial Efficacy of Biogenic Synthesized Silver Nanoparticles using Ajuga bractosa with Standard Antibiotics: A Study Against Bacterial Pathogens. Nazer S; Andleeb S; Ali S; Gulzar N; Iqbal T; Khan MAR; Raza A Curr Pharm Biotechnol; 2020; 21(3):206-218. PubMed ID: 31573882 [TBL] [Abstract][Full Text] [Related]
38. Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity. Ashokkumar S; Ravi S; Kathiravan V; Velmurugan S Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():34-9. PubMed ID: 24997264 [TBL] [Abstract][Full Text] [Related]
39. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Pugazhendhi A; Prabakar D; Jacob JM; Karuppusamy I; Saratale RG Microb Pathog; 2018 Jan; 114():41-45. PubMed ID: 29146498 [TBL] [Abstract][Full Text] [Related]