These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 30268059)

  • 1. State representation learning for control: An overview.
    Lesort T; Díaz-Rodríguez N; Goudou JI; Filliat D
    Neural Netw; 2018 Dec; 108():379-392. PubMed ID: 30268059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representation in natural and artificial agents: an embodied cognitive science perspective.
    Pfeifer R; Scheier C
    Z Naturforsch C J Biosci; 1998; 53(7-8):480-503. PubMed ID: 9755508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforcement learning of motor skills with policy gradients.
    Peters J; Schaal S
    Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-based reinforcement learning with dimension reduction.
    Tangkaratt V; Morimoto J; Sugiyama M
    Neural Netw; 2016 Dec; 84():1-16. PubMed ID: 27639719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kernel dynamic policy programming: Applicable reinforcement learning to robot systems with high dimensional states.
    Cui Y; Matsubara T; Sugimoto K
    Neural Netw; 2017 Oct; 94():13-23. PubMed ID: 28732231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encoding primitives generation policy learning for robotic arm to overcome catastrophic forgetting in sequential multi-tasks learning.
    Xiong F; Liu Z; Huang K; Yang X; Qiao H; Hussain A
    Neural Netw; 2020 Sep; 129():163-173. PubMed ID: 32535306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intelligent Robotics Incorporating Machine Learning Algorithms for Improving Functional Capacity Evaluation and Occupational Rehabilitation.
    Fong J; Ocampo R; Gross DP; Tavakoli M
    J Occup Rehabil; 2020 Sep; 30(3):362-370. PubMed ID: 32253595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A parameter control method in reinforcement learning to rapidly follow unexpected environmental changes.
    Murakoshi K; Mizuno J
    Biosystems; 2004 Nov; 77(1-3):109-17. PubMed ID: 15527950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Adaptive-Reinforcement Learning Control for morphing unmanned air vehicles.
    Valasek J; Doebbler J; Tandale MD; Meade AJ
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):1014-20. PubMed ID: 18632393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human-level control through deep reinforcement learning.
    Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D
    Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal information bottleneck for deep reinforcement learning with multiple sensors.
    You B; Liu H
    Neural Netw; 2024 Aug; 176():106347. PubMed ID: 38688069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Reinforcement Learning Neural Network for Robotic Manipulator Control.
    Hu Y; Si B
    Neural Comput; 2018 Jul; 30(7):1983-2004. PubMed ID: 29652591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions.
    Kassahun Y; Yu B; Tibebu AT; Stoyanov D; Giannarou S; Metzen JH; Vander Poorten E
    Int J Comput Assist Radiol Surg; 2016 Apr; 11(4):553-68. PubMed ID: 26450107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement Learning for Improving Agent Design.
    Ha D
    Artif Life; 2019; 25(4):352-365. PubMed ID: 31697584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Goal-directed learning of features and forward models.
    Saeb S; Weber C; Triesch J
    Neural Netw; 2009; 22(5-6):586-92. PubMed ID: 19616917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement learning in multidimensional environments relies on attention mechanisms.
    Niv Y; Daniel R; Geana A; Gershman SJ; Leong YC; Radulescu A; Wilson RC
    J Neurosci; 2015 May; 35(21):8145-57. PubMed ID: 26019331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual Pretraining via Contrastive Predictive Model for Pixel-Based Reinforcement Learning.
    Luu TM; Vu T; Nguyen T; Yoo CD
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating Representation Learning and Graph Layout Methods for Visualization.
    Heiter E; Kang B; De Bie T; Lijffijt J; Potel M
    IEEE Comput Graph Appl; 2022; 42(3):19-28. PubMed ID: 35671278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Contour-following via Haptic Perception and Reinforcement Learning.
    Hellman RB; Tekin C; van der Schaar M; Santos VJ
    IEEE Trans Haptics; 2018; 11(1):61-72. PubMed ID: 28922126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lifelong learning of human actions with deep neural network self-organization.
    Parisi GI; Tani J; Weber C; Wermter S
    Neural Netw; 2017 Dec; 96():137-149. PubMed ID: 29017140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.