These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 30268364)
21. Coincident resection at both ends of random, γ-induced double-strand breaks requires MRX (MRN), Sae2 (Ctp1), and Mre11-nuclease. Westmoreland JW; Resnick MA PLoS Genet; 2013 Mar; 9(3):e1003420. PubMed ID: 23555316 [TBL] [Abstract][Full Text] [Related]
22. Removal of heat-sensitive clustered damaged DNA sites is independent of double-strand break repair. Abramenkovs A; Stenerlöw B PLoS One; 2018; 13(12):e0209594. PubMed ID: 30592737 [TBL] [Abstract][Full Text] [Related]
23. Role of Elg1 protein in double strand break repair. Ogiwara H; Ui A; Enomoto T; Seki M Nucleic Acids Res; 2007; 35(2):353-62. PubMed ID: 17170004 [TBL] [Abstract][Full Text] [Related]
24. The Mre11 nuclease is not required for 5' to 3' resection at multiple HO-induced double-strand breaks. Llorente B; Symington LS Mol Cell Biol; 2004 Nov; 24(21):9682-94. PubMed ID: 15485933 [TBL] [Abstract][Full Text] [Related]
26. Mu transpososome and RecBCD nuclease collaborate in the repair of simple Mu insertions. Choi W; Jang S; Harshey RM Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14112-7. PubMed ID: 25197059 [TBL] [Abstract][Full Text] [Related]
27. The complexity of DNA double strand breaks is a critical factor enhancing end-resection. Yajima H; Fujisawa H; Nakajima NI; Hirakawa H; Jeggo PA; Okayasu R; Fujimori A DNA Repair (Amst); 2013 Nov; 12(11):936-46. PubMed ID: 24041488 [TBL] [Abstract][Full Text] [Related]
28. SIRT6 is a DNA double-strand break sensor. Onn L; Portillo M; Ilic S; Cleitman G; Stein D; Kaluski S; Shirat I; Slobodnik Z; Einav M; Erdel F; Akabayov B; Toiber D Elife; 2020 Jan; 9():. PubMed ID: 31995034 [TBL] [Abstract][Full Text] [Related]
29. Correct end use during end joining of multiple chromosomal double strand breaks is influenced by repair protein RAD50, DNA-dependent protein kinase DNA-PKcs, and transcription context. Gunn A; Bennardo N; Cheng A; Stark JM J Biol Chem; 2011 Dec; 286(49):42470-42482. PubMed ID: 22027841 [TBL] [Abstract][Full Text] [Related]
30. Live-Cell Imaging of Transcriptional Activity at DNA Double-Strand Breaks. de Almeida MR; Gameiro E; de Almeida SF; Martin RM J Vis Exp; 2021 Sep; (175):. PubMed ID: 34605818 [TBL] [Abstract][Full Text] [Related]
31. END-seq: An Unbiased, High-Resolution, and Genome-Wide Approach to Map DNA Double-Strand Breaks and Resection in Human Cells. Wong N; John S; Nussenzweig A; Canela A Methods Mol Biol; 2021; 2153():9-31. PubMed ID: 32840769 [TBL] [Abstract][Full Text] [Related]
32. Characterization of a complex 125I-induced DNA double-strand break: implications for repair. Datta K; Neumann RD; Winters TA Int J Radiat Biol; 2005 Jan; 81(1):13-21. PubMed ID: 15962759 [TBL] [Abstract][Full Text] [Related]
33. Mu insertions are repaired by the double-strand break repair pathway of Escherichia coli. Jang S; Sandler SJ; Harshey RM PLoS Genet; 2012; 8(4):e1002642. PubMed ID: 22511883 [TBL] [Abstract][Full Text] [Related]
35. Structural snapshots of human DNA polymerase μ engaged on a DNA double-strand break. Kaminski AM; Pryor JM; Ramsden DA; Kunkel TA; Pedersen LC; Bebenek K Nat Commun; 2020 Sep; 11(1):4784. PubMed ID: 32963245 [TBL] [Abstract][Full Text] [Related]
36. DNA repair kinetics in SCID mice Sertoli cells and DNA-PKcs-deficient mouse embryonic fibroblasts. Ahmed EA; Vélaz E; Rosemann M; Gilbertz KP; Scherthan H Chromosoma; 2017 Mar; 126(2):287-298. PubMed ID: 27136939 [TBL] [Abstract][Full Text] [Related]
37. Telomeres and double-strand breaks - all's well that "ends" well. .. Bailey SM Radiat Res; 2008 Jan; 169(1):1-7. PubMed ID: 18159961 [TBL] [Abstract][Full Text] [Related]
38. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax. Goodarzi AA; Jeggo P; Lobrich M DNA Repair (Amst); 2010 Dec; 9(12):1273-82. PubMed ID: 21036673 [TBL] [Abstract][Full Text] [Related]
39. Comparison of High- and Low-LET Radiation-Induced DNA Double-Strand Break Processing in Living Cells. Roobol SJ; van den Bent I; van Cappellen WA; Abraham TE; Paul MW; Kanaar R; Houtsmuller AB; van Gent DC; Essers J Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32917044 [TBL] [Abstract][Full Text] [Related]
40. The high toxicity of DSB-clusters modelling high-LET-DNA damage derives from inhibition of c-NHEJ and promotion of alt-EJ and SSA despite increases in HR. Mladenova V; Mladenov E; Chaudhary S; Stuschke M; Iliakis G Front Cell Dev Biol; 2022; 10():1016951. PubMed ID: 36263011 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]