These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 30268421)
1. LED-enhanced biosynthesis of biologically active ingredients in callus cultures of Ocimum basilicum. Nadeem M; Abbasi BH; Younas M; Ahmad W; Zahir A; Hano C J Photochem Photobiol B; 2019 Jan; 190():172-178. PubMed ID: 30268421 [TBL] [Abstract][Full Text] [Related]
2. Differential Production of Phenylpropanoid Metabolites in Callus Cultures of Ocimum basilicum L. with Distinct In Vitro Antioxidant Activities and In Vivo Protective Effects against UV stress. Nazir M; Tungmunnithum D; Bose S; Drouet S; Garros L; Giglioli-Guivarc'h N; Abbasi BH; Hano C J Agric Food Chem; 2019 Feb; 67(7):1847-1859. PubMed ID: 30681331 [TBL] [Abstract][Full Text] [Related]
3. Interactive Effect of Melatonin and UV-C on Phenylpropanoid Metabolite Production and Antioxidant Potential in Callus Cultures of Purple Basil ( Nazir M; Asad Ullah M; Mumtaz S; Siddiquah A; Shah M; Drouet S; Hano C; Abbasi BH Molecules; 2020 Feb; 25(5):. PubMed ID: 32121015 [TBL] [Abstract][Full Text] [Related]
4. Synergistic effects of melatonin and distinct spectral lights for enhanced production of anti-cancerous compounds in callus cultures of Fagonia indica. Khan T; Ullah MA; Garros L; Hano C; Abbasi BH J Photochem Photobiol B; 2019 Jan; 190():163-171. PubMed ID: 30482427 [TBL] [Abstract][Full Text] [Related]
5. Copper oxide (CuO) and manganese oxide (MnO) nanoparticles induced biomass accumulation, antioxidants biosynthesis and abiotic elicitation of bioactive compounds in callus cultures of Nazir S; Jan H; Zaman G; Khan T; Ashraf H; Meer B; Zia M; Drouet S; Hano C; Abbasi BH Artif Cells Nanomed Biotechnol; 2021 Dec; 49(1):626-634. PubMed ID: 34597252 [TBL] [Abstract][Full Text] [Related]
6. Influence of light quality on growth, secondary metabolites production and antioxidant activity in callus culture of Rhodiola imbricata Edgew. Kapoor S; Raghuvanshi R; Bhardwaj P; Sood H; Saxena S; Chaurasia OP J Photochem Photobiol B; 2018 Jun; 183():258-265. PubMed ID: 29747145 [TBL] [Abstract][Full Text] [Related]
8. Callus Culture of Thai Basil Is an Effective Biological System for the Production of Antioxidants. Nazir S; Jan H; Tungmunnithum D; Drouet S; Zia M; Hano C; Abbasi BH Molecules; 2020 Oct; 25(20):. PubMed ID: 33096885 [TBL] [Abstract][Full Text] [Related]
9. Phenolic Contents and Antioxidant Properties of Abdel-Razakh HH; Bakari GG; Park JS; Pan CH; Hoza AS Molecules; 2024 Oct; 29(19):. PubMed ID: 39407612 [TBL] [Abstract][Full Text] [Related]
10. Plant architecture and phytochemical composition of basil (Ocimum basilicum L.) under the influence of light from microwave plasma and high-pressure sodium lamps. Dörr OS; Brezina S; Rauhut D; Mibus H J Photochem Photobiol B; 2020 Jan; 202():111678. PubMed ID: 31734433 [TBL] [Abstract][Full Text] [Related]
11. Acidic Potassium Permanganate Chemiluminescence for the Determination of Antioxidant Potential in Three Cultivars of Ocimum basilicum. Srivastava S; Adholeya A; Conlan XA; Cahill DM Plant Foods Hum Nutr; 2016 Mar; 71(1):72-80. PubMed ID: 26803763 [TBL] [Abstract][Full Text] [Related]
12. Spectral lights trigger biomass accumulation and production of antioxidant secondary metabolites in adventitious root cultures of Stevia rebaudiana (Bert.). Idrees M; Sania B; Hafsa B; Kumari S; Khan H; Fazal H; Ahmad I; Akbar F; Ahmad N; Ali S; Ahmad N C R Biol; 2018; 341(6):334-342. PubMed ID: 29859915 [TBL] [Abstract][Full Text] [Related]
13. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert). Ahmad N; Rab A; Ahmad N J Photochem Photobiol B; 2016 Jan; 154():51-6. PubMed ID: 26688290 [TBL] [Abstract][Full Text] [Related]
14. The importance of monochromatic lights in the production of phenolic acids and flavonoids in shoot cultures of Aronia melanocarpa, Aronia arbutifolia and Aronia × prunifolia. Szopa A; Starzec A; Ekiert H J Photochem Photobiol B; 2018 Feb; 179():91-97. PubMed ID: 29351879 [TBL] [Abstract][Full Text] [Related]
15. Monochromatic lights-induced trends in antioxidant and antidiabetic polyphenol accumulation in in vitro callus cultures of Lepidium sativum L. Ullah MA; Tungmunnithum D; Garros L; Hano C; Abbasi BH J Photochem Photobiol B; 2019 Jul; 196():111505. PubMed ID: 31129506 [TBL] [Abstract][Full Text] [Related]
16. Production of rosmarinic acid and correlated gene expression in hairy root cultures of green and purple basil ( Kwon DY; Kim YB; Kim JK; Park SU Prep Biochem Biotechnol; 2021; 51(1):35-43. PubMed ID: 32687005 [TBL] [Abstract][Full Text] [Related]
17. Scale-up micropropagation of sweet basil (Ocimum basilicum L.) in an airlift bioreactor and accumulation of rosmarinic acid. Kintzios S; Kollias H; Straitouris E; Makri O Biotechnol Lett; 2004 Mar; 26(6):521-3. PubMed ID: 15127795 [TBL] [Abstract][Full Text] [Related]
18. Interactive Effects of Wide-Spectrum Monochromatic Lights on Phytochemical Production, Antioxidant and Biological Activities of Usman H; Ullah MA; Jan H; Siddiquah A; Drouet S; Anjum S; Giglioli-Guviarc'h N; Hano C; Abbasi BH Molecules; 2020 May; 25(9):. PubMed ID: 32397194 [No Abstract] [Full Text] [Related]
19. Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). Kim HJ; Chen F; Wang X; Rajapakse NC J Agric Food Chem; 2005 May; 53(9):3696-701. PubMed ID: 15853422 [TBL] [Abstract][Full Text] [Related]
20. Correlation of different spectral lights with biomass accumulation and production of antioxidant secondary metabolites in callus cultures of medicinally important Prunella vulgaris L. Fazal H; Abbasi BH; Ahmad N; Ali SS; Akbar F; Kanwal F J Photochem Photobiol B; 2016 Jun; 159():1-7. PubMed ID: 26995670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]