BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 30268611)

  • 1. Short communication: Characterization of gene expression profiles related to yak milk protein synthesis during the lactation cycle.
    Xia W; Osorio JS; Yang Y; Liu D; Jiang MF
    J Dairy Sci; 2018 Dec; 101(12):11150-11158. PubMed ID: 30268611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. d-Glucose and amino acid deficiency inhibits casein synthesis through JAK2/STAT5 and AMPK/mTOR signaling pathways in mammary epithelial cells of dairy cows.
    Zhang MC; Zhao SG; Wang SS; Luo CC; Gao HN; Zheng N; Wang JQ
    J Dairy Sci; 2018 Feb; 101(2):1737-1746. PubMed ID: 29248227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Varying the ratio of Lys:Met while maintaining the ratios of Thr:Phe, Lys:Thr, Lys:His, and Lys:Val alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription.
    Dong X; Zhou Z; Saremi B; Helmbrecht A; Wang Z; Loor JJ
    J Dairy Sci; 2018 Feb; 101(2):1708-1718. PubMed ID: 29248224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of AMP-activated protein kinase (AMPK) signaling and essential amino acids on mammalian target of rapamycin (mTOR) signaling and protein synthesis rates in mammary cells.
    Appuhamy JA; Nayananjalie WA; England EM; Gerrard DE; Akers RM; Hanigan MD
    J Dairy Sci; 2014; 97(1):419-29. PubMed ID: 24183687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of AKT serine/threonine kinase and abundance of milk protein synthesis gene networks in mammary tissue in response to supply of methionine in periparturient Holstein cows.
    Ma YF; Batistel F; Xu TL; Han LQ; Bucktrout R; Liang Y; Coleman DN; Parys C; Loor JJ
    J Dairy Sci; 2019 May; 102(5):4264-4274. PubMed ID: 30879806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression analysis of protein synthesis pathways in bovine mammary epithelial cells purified from milk during lactation and short-term restricted feeding.
    Sigl T; Meyer HH; Wiedemann S
    J Anim Physiol Anim Nutr (Berl); 2014 Feb; 98(1):84-95. PubMed ID: 23402545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of L-type amino acid transporter 1 on milk protein synthesis in mammary glands of dairy cows.
    Lin Y; Duan X; Lv H; Yang Y; Liu Y; Gao X; Hou X
    J Dairy Sci; 2018 Feb; 101(2):1687-1696. PubMed ID: 29224866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of jugular infusions of isoleucine, leucine, methionine, threonine, and other amino acids on insulin and glucagon concentrations, mammalian target of rapamycin (mTOR) signaling, and lactational performance in goats.
    Xu LB; Hanigan MD; Lin XY; Li MM; Yan ZG; Hu ZY; Hou QL; Wang Y; Shi KR; Wang ZH
    J Dairy Sci; 2019 Oct; 102(10):9017-9027. PubMed ID: 31351725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of interaction between leucine and acetate on the milk protein synthesis in bovine mammary epithelial cells.
    Zhao Y; Yan S; Chen L; Shi B; Guo X
    Anim Sci J; 2019 Jan; 90(1):81-89. PubMed ID: 30397989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decline in mammary translational capacity during intravenous glucose infusion into lactating dairy cows.
    Curtis RV; Kim JJ; Bajramaj DL; Doelman J; Osborne VR; Cant JP
    J Dairy Sci; 2014; 97(1):430-8. PubMed ID: 24268408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased milk protein synthesis in response to exogenous growth hormone is associated with changes in mechanistic (mammalian) target of rapamycin (mTOR)C1-dependent and independent cell signaling.
    Sciascia Q; Pacheco D; McCoard SA
    J Dairy Sci; 2013 Apr; 96(4):2327-2338. PubMed ID: 23462168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acids regulate mTOR pathway and milk protein synthesis in a mouse mammary epithelial cell line is partly mediated by T1R1/T1R3.
    Wang Y; Liu J; Wu H; Fang X; Chen H; Zhang C
    Eur J Nutr; 2017 Dec; 56(8):2467-2474. PubMed ID: 27539583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolomic profiles in yak mammary gland tissue during the lactation cycle.
    Li Z; Jiang M
    PLoS One; 2019; 14(7):e0219220. PubMed ID: 31276563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Milk protein synthesis is regulated by T1R1/T1R3, a G protein-coupled taste receptor, through the mTOR pathway in the mouse mammary gland.
    Liu J; Wang Y; Li D; Wang Y; Li M; Chen C; Fang X; Chen H; Zhang C
    Mol Nutr Food Res; 2017 Sep; 61(9):. PubMed ID: 28497545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isoleucine, leucine, methionine, and threonine effects on mammalian target of rapamycin signaling in mammary tissue.
    Arriola Apelo SI; Singer LM; Lin XY; McGilliard ML; St-Pierre NR; Hanigan MD
    J Dairy Sci; 2014 Feb; 97(2):1047-56. PubMed ID: 24359813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mammary epithelial cells in vitro.
    Salama AAK; Duque M; Wang L; Shahzad K; Olivera M; Loor JJ
    J Dairy Sci; 2019 Mar; 102(3):2469-2480. PubMed ID: 30639019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene networks driving bovine mammary protein synthesis during the lactation cycle.
    Bionaz M; Loor JJ
    Bioinform Biol Insights; 2011; 5():83-98. PubMed ID: 21698073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA-221 regulates proliferation of bovine mammary gland epithelial cells by targeting the STAT5a and IRS1 genes.
    Jiao BL; Zhang XL; Wang SH; Wang LX; Luo ZX; Zhao HB; Khatib H; Wang X
    J Dairy Sci; 2019 Jan; 102(1):426-435. PubMed ID: 30366615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High levels of fatty acids inhibit β-casein synthesis through suppression of the JAK2/STAT5 and mTOR signaling pathways in mammary epithelial cells of cows with clinical ketosis.
    Shu X; Fang Z; Guan Y; Chen X; Loor JJ; Jia H; Dong J; Wang Y; Zuo R; Liu G; Li X; Li X
    J Dairy Res; 2020 May; 87(2):212-219. PubMed ID: 32308163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initiation and elongation steps of mRNA translation are involved in the increase in milk protein yield caused by growth hormone administration during lactation.
    Hayashi AA; Nones K; Roy NC; McNabb WC; Mackenzie DS; Pacheco D; McCoard S
    J Dairy Sci; 2009 May; 92(5):1889-99. PubMed ID: 19389947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.