These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30268818)

  • 1. Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes.
    Uranukul B; Woolston BM; Fink GR; Stephanopoulos G
    Metab Eng; 2019 Jan; 51():20-31. PubMed ID: 30268818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae.
    Salusjärvi L; Toivari M; Vehkomäki ML; Koivistoinen O; Mojzita D; Niemelä K; Penttilä M; Ruohonen L
    Appl Microbiol Biotechnol; 2017 Nov; 101(22):8151-8163. PubMed ID: 29038973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of ethylene glycol in Escherichia coli.
    Liu H; Ramos KR; Valdehuesa KN; Nisola GM; Lee WK; Chung WJ
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3409-17. PubMed ID: 23233208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives.
    Salusjärvi L; Havukainen S; Koivistoinen O; Toivari M
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2525-2535. PubMed ID: 30707252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced yield of ethylene glycol production from d-xylose by pathway optimization in Escherichia coli.
    Cabulong RB; Valdehuesa KN; Ramos KR; Nisola GM; Lee WK; Lee CR; Chung WJ
    Enzyme Microb Technol; 2017 Feb; 97():11-20. PubMed ID: 28010767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Escherichia coli for the utilization of ethylene glycol.
    Pandit AV; Harrison E; Mahadevan R
    Microb Cell Fact; 2021 Jan; 20(1):22. PubMed ID: 33482812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bypassing the Pentose Phosphate Pathway: Towards Modular Utilization of Xylose.
    Chomvong K; Bauer S; Benjamin DI; Li X; Nomura DK; Cate JH
    PLoS One; 2016; 11(6):e0158111. PubMed ID: 27336308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of ethylene glycol from d-xylose in recombinant Escherichia coli.
    Wang Y; Xian M; Feng X; Liu M; Zhao G
    Bioengineered; 2018; 9(1):233-241. PubMed ID: 29865993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.
    Matsushika A; Sawayama S
    Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of ethylene glycol production from (D)-xylose via a synthetic pathway implemented in Escherichia coli.
    Alkim C; Cam Y; Trichez D; Auriol C; Spina L; Vax A; Bartolo F; Besse P; François JM; Walther T
    Microb Cell Fact; 2015 Sep; 14():127. PubMed ID: 26336892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption.
    Scalcinati G; Otero JM; Van Vleet JR; Jeffries TW; Olsson L; Nielsen J
    FEMS Yeast Res; 2012 Aug; 12(5):582-97. PubMed ID: 22487265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae.
    Kim SJ; Seo SO; Park YC; Jin YS; Seo JH
    J Biotechnol; 2014 Dec; 192 Pt B():376-82. PubMed ID: 24480571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Engineering of the xylose metabolic pathway for microbial production of bio-based chemicals].
    Liu W; Fu J; Zhang B; Chen T
    Sheng Wu Gong Cheng Xue Bao; 2013 Aug; 29(8):1161-72. PubMed ID: 24364352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism.
    Kim SR; Park YC; Jin YS; Seo JH
    Biotechnol Adv; 2013 Nov; 31(6):851-61. PubMed ID: 23524005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR; Kwee NR; Kim H; Jin YS
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes.
    Konishi J; Fukuda A; Mutaguchi K; Uemura T
    Biotechnol Lett; 2015 Aug; 37(8):1623-30. PubMed ID: 25994575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate.
    Pereira B; Li ZJ; De Mey M; Lim CG; Zhang H; Hoeltgen C; Stephanopoulos G
    Metab Eng; 2016 Mar; 34():80-87. PubMed ID: 26711083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine-tuning of xylose metabolism in genetically engineered Saccharomyces cerevisiae by scattered integration of xylose assimilation genes.
    Zuo Q; Zhao XQ; Xiong L; Liu HJ; Xu YH; Hu SY; Ma ZY; Zhu QW; Bai FW
    Biochem Biophys Res Commun; 2013 Oct; 440(2):241-4. PubMed ID: 24051089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.