These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 30269015)
1. Cadmium accumulation and toxicity affect the extracytoplasmic polyphosphate level in Chlamydomonas reinhardtii. Samadani M; Dewez D Ecotoxicol Environ Saf; 2018 Dec; 166():200-206. PubMed ID: 30269015 [TBL] [Abstract][Full Text] [Related]
2. Effect of mercury on the polyphosphate level of alga Chlamydomonas reinhardtii. Samadani M; Dewez D Environ Pollut; 2018 Sep; 240():506-513. PubMed ID: 29754100 [TBL] [Abstract][Full Text] [Related]
3. Effect of cadmium accumulation on green algae Chlamydomonas reinhardtii and acid-tolerant Chlamydomonas CPCC 121. Samadani M; Perreault F; Oukarroum A; Dewez D Chemosphere; 2018 Jan; 191():174-182. PubMed ID: 29032262 [TBL] [Abstract][Full Text] [Related]
4. Effects of TiO Yu Z; Hao R; Zhang L; Zhu Y Ecotoxicol Environ Saf; 2018 Jul; 156():75-86. PubMed ID: 29533210 [TBL] [Abstract][Full Text] [Related]
5. Cadmium detoxification strategies in two phytoplankton species: metal binding by newly synthesized thiolated peptides and metal sequestration in granules. Lavoie M; Le Faucheur S; Fortin C; Campbell PG Aquat Toxicol; 2009 Apr; 92(2):65-75. PubMed ID: 19201040 [TBL] [Abstract][Full Text] [Related]
6. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model. Xie M; Sun Y; Feng J; Gao Y; Zhu L Aquat Toxicol; 2019 May; 210():106-116. PubMed ID: 30844631 [TBL] [Abstract][Full Text] [Related]
7. Predicting cadmium accumulation and toxicity in a green alga in the presence of varying essential element concentrations using a biotic ligand model. Lavoie M; Campbell PG; Fortin C Environ Sci Technol; 2014 Jan; 48(2):1222-9. PubMed ID: 24341312 [TBL] [Abstract][Full Text] [Related]
8. Whole-genome re-sequencing and transcriptome reveal cadmium tolerance related genes and pathways in Chlamydomonas reinhardtii. Yu Z; Zhang T; Zhu Y Ecotoxicol Environ Saf; 2020 Mar; 191():110231. PubMed ID: 31981954 [TBL] [Abstract][Full Text] [Related]
9. pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: implications for an algal BLM. François L; Fortin C; Campbell PG Aquat Toxicol; 2007 Aug; 84(2):123-32. PubMed ID: 17651821 [TBL] [Abstract][Full Text] [Related]
10. Physiological changes in Chlamydomonas reinhardtii after 1000 generations of selection of cadmium exposure at environmentally relevant concentrations. Yu Z; Wei H; Hao R; Chu H; Zhu Y Environ Sci Process Impacts; 2018 Jun; 20(6):923-933. PubMed ID: 29725674 [TBL] [Abstract][Full Text] [Related]
11. Relationships between surface-bound and internalized copper and cadmium and toxicity in Chlamydomonas reinhardtii. Stoiber TL; Shafer MM; Armstrong DE Environ Toxicol Chem; 2012 Feb; 31(2):324-35. PubMed ID: 22045579 [TBL] [Abstract][Full Text] [Related]
12. Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene. Aksmann A; Pokora W; Baścik-Remisiewicz A; Dettlaff-Pokora A; Wielgomas B; Dziadziuszko M; Tukaj Z Ecotoxicol Environ Saf; 2014 Dec; 110():31-40. PubMed ID: 25193882 [TBL] [Abstract][Full Text] [Related]
13. Pools of cadmium in Chlamydomonas reinhardtii revealed by chemical imaging and XAS spectroscopy. Penen F; Isaure MP; Dobritzsch D; Bertalan I; Castillo-Michel H; Proux O; Gontier E; Le Coustumer P; Schaumlöffel D Metallomics; 2017 Jul; 9(7):910-923. PubMed ID: 28598481 [TBL] [Abstract][Full Text] [Related]
14. Differential effects of copper and cadmium exposure on toxicity endpoints and gene expression in Chlamydomonas reinhardtii. Stoiber TL; Shafer MM; Armstrong DE Environ Toxicol Chem; 2010 Jan; 29(1):191-200. PubMed ID: 20821435 [TBL] [Abstract][Full Text] [Related]
15. Morphological plasticity in Chlamydomonas reinhardtii and acclimation to micropollutant stress. Cheloni G; Slaveykova VI Aquat Toxicol; 2021 Feb; 231():105711. PubMed ID: 33338702 [TBL] [Abstract][Full Text] [Related]
16. Responses of Chlamydomonas reinhardtii during the transition from P-deficient to P-sufficient growth (the P-overplus response): The roles of the vacuolar transport chaperones and polyphosphate synthesis. Plouviez M; Fernández E; Grossman AR; Sanz-Luque E; Sells M; Wheeler D; Guieysse B J Phycol; 2021 Jun; 57(3):988-1003. PubMed ID: 33778959 [TBL] [Abstract][Full Text] [Related]
17. Sensitivity of Chlamydomonas reinhardtii to cadmium stress is associated with phototaxis. Yu Z; Zhang T; Hao R; Zhu Y Environ Sci Process Impacts; 2019 Jun; 21(6):1011-1020. PubMed ID: 31120077 [TBL] [Abstract][Full Text] [Related]
18. Metal stoichiometry in predicting Cd and Cu toxicity to a freshwater green alga Chlamydomonas reinhardtii. Wang WX; Dei RC Environ Pollut; 2006 Jul; 142(2):303-12. PubMed ID: 16310914 [TBL] [Abstract][Full Text] [Related]
19. In situ evaluation of cadmium biomarkers in green algae. Simon DF; Davis TA; Tercier-Waeber ML; England R; Wilkinson KJ Environ Pollut; 2011 Oct; 159(10):2630-6. PubMed ID: 21696872 [TBL] [Abstract][Full Text] [Related]
20. Cd2+ Toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles. Yang WW; Miao AJ; Yang LY PLoS One; 2012; 7(3):e32300. PubMed ID: 22403644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]