These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 30269190)
1. Estimation of chlorophyll a content in inland turbidity waters using WorldView-2 imagery: a case study of the Guanting Reservoir, Beijing, China. Wang X; Gong Z; Pu R Environ Monit Assess; 2018 Sep; 190(10):620. PubMed ID: 30269190 [TBL] [Abstract][Full Text] [Related]
2. Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: modeling results. Dall'Olmo G; Gitelson AA Appl Opt; 2006 May; 45(15):3577-92. PubMed ID: 16708105 [TBL] [Abstract][Full Text] [Related]
3. Remote chlorophyll-a estimates for inland waters based on a cluster-based classification. Shi K; Li Y; Li L; Lu H; Song K; Liu Z; Xu Y; Li Z Sci Total Environ; 2013 Feb; 444():1-15. PubMed ID: 23262320 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of chlorophyll-a retrieval algorithms based on MERIS bands for optically varying eutrophic inland lakes. Lyu H; Li X; Wang Y; Jin Q; Cao K; Wang Q; Li Y Sci Total Environ; 2015 Oct; 530-531():373-382. PubMed ID: 26057542 [TBL] [Abstract][Full Text] [Related]
5. Estimation of chlorophyll-a concentration using field spectral data: a case study in inland Case-II waters, North China. Xu J; Li F; Zhang B; Song K; Wang Z; Liu D; Zhang G Environ Monit Assess; 2009 Nov; 158(1-4):105-16. PubMed ID: 18853267 [TBL] [Abstract][Full Text] [Related]
6. A novel chlorophyll-a retrieval model based on suspended particulate matter classification and different machine learning. Fang C; Song C; Wen Z; Liu G; Wang X; Li S; Shang Y; Tao H; Lyu L; Song K Environ Res; 2024 Jan; 240(Pt 1):117430. PubMed ID: 37866530 [TBL] [Abstract][Full Text] [Related]
7. [Remote chlorophyll a retrieval in Taihu Lake by three-band model using hyperion hyperspectral data]. Du C; Wang SX; Zhou Y; Yan FL Huan Jing Ke Xue; 2009 Oct; 30(10):2904-10. PubMed ID: 19968105 [TBL] [Abstract][Full Text] [Related]
8. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Gilerson AA; Gitelson AA; Zhou J; Gurlin D; Moses W; Ioannou I; Ahmed SA Opt Express; 2010 Nov; 18(23):24109-25. PubMed ID: 21164758 [TBL] [Abstract][Full Text] [Related]
9. Estimation of underwater visibility in coastal and inland waters using remote sensing data. Kulshreshtha A; Shanmugam P Environ Monit Assess; 2017 Apr; 189(4):199. PubMed ID: 28361489 [TBL] [Abstract][Full Text] [Related]
10. NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study. Yacobi YZ; Moses WJ; Kaganovsky S; Sulimani B; Leavitt BC; Gitelson AA Water Res; 2011 Mar; 45(7):2428-36. PubMed ID: 21376361 [TBL] [Abstract][Full Text] [Related]
11. An ensemble machine learning model for water quality estimation in coastal area based on remote sensing imagery. Zhu X; Guo H; Huang JJ; Tian S; Xu W; Mai Y J Environ Manage; 2022 Dec; 323():116187. PubMed ID: 36261960 [TBL] [Abstract][Full Text] [Related]
12. Assessment of Chlorophyll-a Algorithms Considering Different Trophic Statuses and Optimal Bands. Salem SI; Higa H; Kim H; Kobayashi H; Oki K; Oki T Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28758984 [TBL] [Abstract][Full Text] [Related]
13. An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery. Chen J; Quan W Environ Monit Assess; 2013 Mar; 185(3):2243-55. PubMed ID: 22707149 [TBL] [Abstract][Full Text] [Related]
14. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties. Al Shehhi MR; Gherboudj I; Ghedira H J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493 [TBL] [Abstract][Full Text] [Related]
15. Remote sensing estimation of chlorophyll-a concentration in Taihu Lake considering spatial and temporal variations. Cheng C; Wei Y; Lv G; Xu N Environ Monit Assess; 2019 Jan; 191(2):84. PubMed ID: 30659368 [TBL] [Abstract][Full Text] [Related]
16. Novel methods for monitoring low chlorophyll-a concentrations in the large, oligotrophic Lake Malawi/Nyasa/Niassa. Makwinja R; Inagaki Y; Tesfamichael SG; Curtis CJ J Environ Manage; 2024 Jul; 364():121462. PubMed ID: 38878578 [TBL] [Abstract][Full Text] [Related]
17. Spatiotemporal dynamics of chlorophyll-a in a large reservoir as derived from Landsat 8 OLI data: understanding its driving and restrictive factors. Li Y; Zhang Y; Shi K; Zhou Y; Zhang Y; Liu X; Guo Y Environ Sci Pollut Res Int; 2018 Jan; 25(2):1359-1374. PubMed ID: 29090433 [TBL] [Abstract][Full Text] [Related]
18. Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results. Dall'Olmo G; Gitelson AA Appl Opt; 2005 Jan; 44(3):412-22. PubMed ID: 15717831 [TBL] [Abstract][Full Text] [Related]
19. [Comparison of chlorophyll a concentration estimation in Taihu Lake using different methods]. Li YL; Zhang YL; Li JS; Liu ML Huan Jing Ke Xue; 2009 Mar; 30(3):680-6. PubMed ID: 19432312 [TBL] [Abstract][Full Text] [Related]
20. Deep learning based regression for optically inactive inland water quality parameter estimation using airborne hyperspectral imagery. Niu C; Tan K; Jia X; Wang X Environ Pollut; 2021 Oct; 286():117534. PubMed ID: 34119861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]