These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30269218)

  • 1. Hydrodynamics and mathematical modelling in a low HRT inverse fluidized-bed reactor for biological sulphate reduction.
    Reyes-Alvarado LC; Hatzikioseyian A; Rene ER; Houbron E; Rustrian E; Esposito G; Lens PNL
    Bioprocess Biosyst Eng; 2018 Dec; 41(12):1869-1882. PubMed ID: 30269218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignocellulosic biowastes as carrier material and slow release electron donor for sulphidogenesis of wastewater in an inverse fluidized bed bioreactor.
    Reyes-Alvarado LC; Camarillo-Gamboa Á; Rustrian E; Rene ER; Esposito G; Lens PNL; Houbron E
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5115-5128. PubMed ID: 28702909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological inverse fluidized-bed reactors for the treatment of low pH- and sulphate-containing wastewaters under different COD/SO4(2-) conditions.
    Papirio S; Esposito G; Pirozzi F
    Environ Technol; 2013; 34(9-12):1141-9. PubMed ID: 24191446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the liquid upflow velocity on thermophilic sulphate reduction in acidifying granular sludge reactors.
    Lens PN; Korthout D; van Lier JB; Hulshoff Pol LW; Lettinga G
    Environ Technol; 2001 Feb; 22(2):183-93. PubMed ID: 11349377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilm development during the start-up of a sulfate-reducing down-flow fluidized bed reactor at different COD/SO4(2-) ratios and HRT.
    Piña-Salazar EZ; Cervantes FJ; Meraz M; Celis LB
    Water Sci Technol; 2011; 64(4):910-6. PubMed ID: 22097079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of enhanced sulphidogenesis process for the treatment of wastewater having low COD/SO(4)(2-) ratio.
    Sabumon PC
    J Hazard Mater; 2008 Nov; 159(2-3):616-25. PubMed ID: 18400386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term performance of a UASB reactor treating acid mine drainage: effects of sulfate loading rate, hydraulic retention time, and COD/SO
    Cunha MP; Ferraz RM; Sancinetti GP; Rodriguez RP
    Biodegradation; 2019 Feb; 30(1):47-58. PubMed ID: 30406872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of an anaerobic bioreactor with biomass recycling, continuously removing COD and sulphate from industrial wastes.
    Kosińska K; Miśkiewicz T
    Bioresour Technol; 2009 Jan; 100(1):86-90. PubMed ID: 18650086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of hydrophobic membranes to supply hydrogen to sulphate reducing bioreactors.
    Fedorovich V; Greben M; Kalyuzhnyi S; Lens P; Hulshoff Pol L
    Biodegradation; 2000; 11(5):295-303. PubMed ID: 11487059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tannery effluent as a carbon source for biological sulphate reduction.
    Boshoff G; Duncan J; Rose PD
    Water Res; 2004 Jun; 38(11):2651-8. PubMed ID: 15207595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor.
    Kaksonen AH; Franzmann PD; Puhakka JA
    Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced reduction of sulfate by iron-carbon microelectrolysis: interaction mechanism between microelectrolysis and microorganisms.
    Li H; Di J; Dong Y; Bao S; Fu S
    Environ Sci Pollut Res Int; 2024 May; 31(21):31577-31589. PubMed ID: 38635092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial sulphate reduction during anaerobic digestion: EGSB process performance and potential for nitrite suppression of SRB activity.
    O'Reilly C; Colleran E
    Water Sci Technol; 2005; 52(1-2):371-6. PubMed ID: 16180452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of micro-algal biomass as a carbon source for biological sulphate reducing systems.
    Boshoff G; Duncan J; Rose PD
    Water Res; 2004 Jun; 38(11):2659-66. PubMed ID: 15207596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotreatment of sulfate-rich wastewater in an anaerobic/micro-aerobic bioreactor system.
    Chuang SH; Pai TY; Horng RY
    Environ Technol; 2005 Sep; 26(9):993-1001. PubMed ID: 16196408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimisation of sulphate reduction in a methanol-fed thermophilic bioreactor.
    Weijma J; Bots EA; Tandlinger G; Stams AJ; Hulshoff Pol LW; Lettinga G
    Water Res; 2002 Apr; 36(7):1825-33. PubMed ID: 12044082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial degradation of phenol in a modified three-stage airlift packing-bed reactor.
    Huang CH; Liou RM; Chen SH; Hung MY; Lai CL; Lai JY
    Water Environ Res; 2010 Mar; 82(3):249-58. PubMed ID: 20369569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of high-sulfate wastewater treatment by two-phase anaerobic digestion process with Jet-loop anaerobic fluidized bed.
    Wei CH; Wang WX; Deng ZY; Wu CF
    J Environ Sci (China); 2007; 19(3):264-70. PubMed ID: 17918585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial sulfate reduction in a liquid-solid fluidized bed reactor.
    Nagpal S; Chuichulcherm S; Peeva L; Livingston A
    Biotechnol Bioeng; 2000 Nov; 70(4):370-80. PubMed ID: 11005919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.