These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1595 related articles for article (PubMed ID: 30269345)
1. A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy. Fu Y; Mazur TR; Wu X; Liu S; Chang X; Lu Y; Li HH; Kim H; Roach MC; Henke L; Yang D Med Phys; 2018 Nov; 45(11):5129-5137. PubMed ID: 30269345 [TBL] [Abstract][Full Text] [Related]
2. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images. Tong N; Gou S; Yang S; Cao M; Sheng K Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188 [TBL] [Abstract][Full Text] [Related]
3. Machine-assisted interpolation algorithm for semi-automated segmentation of highly deformable organs. Luximon DC; Abdulkadir Y; Chow PE; Morris ED; Lamb JM Med Phys; 2022 Jan; 49(1):41-51. PubMed ID: 34783027 [TBL] [Abstract][Full Text] [Related]
4. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images. Zhang Z; Zhao T; Gay H; Zhang W; Sun B Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620 [TBL] [Abstract][Full Text] [Related]
5. Esophagus segmentation in CT via 3D fully convolutional neural network and random walk. Fechter T; Adebahr S; Baltas D; Ben Ayed I; Desrosiers C; Dolz J Med Phys; 2017 Dec; 44(12):6341-6352. PubMed ID: 28940372 [TBL] [Abstract][Full Text] [Related]
6. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
7. Cross-modality deep learning: Contouring of MRI data from annotated CT data only. Kieselmann JP; Fuller CD; Gurney-Champion OJ; Oelfke U Med Phys; 2021 Apr; 48(4):1673-1684. PubMed ID: 33251619 [TBL] [Abstract][Full Text] [Related]
8. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN. Xu X; Zhou F; Liu B Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):967-975. PubMed ID: 29556905 [TBL] [Abstract][Full Text] [Related]
9. Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images. Zabihollahy F; White JA; Ukwatta E Med Phys; 2019 Apr; 46(4):1740-1751. PubMed ID: 30734937 [TBL] [Abstract][Full Text] [Related]
10. Abdomen CT multi-organ segmentation using token-based MLP-Mixer. Pan S; Chang CW; Wang T; Wynne J; Hu M; Lei Y; Liu T; Patel P; Roper J; Yang X Med Phys; 2023 May; 50(5):3027-3038. PubMed ID: 36463516 [TBL] [Abstract][Full Text] [Related]
11. MR to ultrasound image registration with segmentation-based learning for HDR prostate brachytherapy. Chen Y; Xing L; Yu L; Liu W; Pooya Fahimian B; Niedermayr T; Bagshaw HP; Buyyounouski M; Han B Med Phys; 2021 Jun; 48(6):3074-3083. PubMed ID: 33905566 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques. Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090 [TBL] [Abstract][Full Text] [Related]
13. Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks. Ma J; Wu F; Jiang T; Zhao Q; Kong D Int J Comput Assist Radiol Surg; 2017 Nov; 12(11):1895-1910. PubMed ID: 28762196 [TBL] [Abstract][Full Text] [Related]
14. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Ibragimov B; Xing L Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307 [TBL] [Abstract][Full Text] [Related]
15. A convolutional neural network algorithm for automatic segmentation of head and neck organs at risk using deep lifelong learning. Chan JW; Kearney V; Haaf S; Wu S; Bogdanov M; Reddick M; Dixit N; Sudhyadhom A; Chen J; Yom SS; Solberg TD Med Phys; 2019 May; 46(5):2204-2213. PubMed ID: 30887523 [TBL] [Abstract][Full Text] [Related]
16. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Men K; Dai J; Li Y Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779 [TBL] [Abstract][Full Text] [Related]
17. MR-based synthetic CT generation using a deep convolutional neural network method. Han X Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624 [TBL] [Abstract][Full Text] [Related]
18. Pretreatment information-aided automatic segmentation for online magnetic resonance imaging-guided prostate radiotherapy. Yang B; Liu Y; Zhu J; Lu N; Dai J; Men K Med Phys; 2024 Feb; 51(2):922-932. PubMed ID: 37449545 [TBL] [Abstract][Full Text] [Related]
19. Progressively refined deep joint registration segmentation (ProRSeg) of gastrointestinal organs at risk: Application to MRI and cone-beam CT. Jiang J; Hong J; Tringale K; Reyngold M; Crane C; Tyagi N; Veeraraghavan H Med Phys; 2023 Aug; 50(8):4758-4774. PubMed ID: 37265185 [TBL] [Abstract][Full Text] [Related]
20. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images. Feng X; Qing K; Tustison NJ; Meyer CH; Chen Q Med Phys; 2019 May; 46(5):2169-2180. PubMed ID: 30830685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]