BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 30269385)

  • 1. Flies as models for circadian clock adaptation to environmental challenges.
    Helfrich-Förster C; Bertolini E; Menegazzi P
    Eur J Neurosci; 2020 Jan; 51(1):166-181. PubMed ID: 30269385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life at High Latitudes Does Not Require Circadian Behavioral Rhythmicity under Constant Darkness.
    Bertolini E; Schubert FK; Zanini D; Sehadová H; Helfrich-Förster C; Menegazzi P
    Curr Biol; 2019 Nov; 29(22):3928-3936.e3. PubMed ID: 31679928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A clock for all seasons.
    Helfrich-Förster C; Rieger D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):473-480. PubMed ID: 38896260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian clock of Drosophila montana is adapted to high variation in summer day lengths and temperatures prevailing at high latitudes.
    Kauranen H; Ala-Honkola O; Kankare M; Hoikkala A
    J Insect Physiol; 2016 Jun; 89():9-18. PubMed ID: 26993661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of Circadian Neuronal Network to Photoperiod in High-Latitude European Drosophilids.
    Menegazzi P; Dalla Benetta E; Beauchamp M; Schlichting M; Steffan-Dewenter I; Helfrich-Förster C
    Curr Biol; 2017 Mar; 27(6):833-839. PubMed ID: 28262491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real time, in vivo measurement of neuronal and peripheral clocks in
    Johnstone PS; Ogueta M; Akay O; Top I; Syed S; Stanewsky R; Top D
    Elife; 2022 Oct; 11():. PubMed ID: 36190119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of photoperiodic and temperature cues by the circadian clock to regulate insect seasonal adaptations.
    Hidalgo S; Chiu JC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):585-599. PubMed ID: 37584703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Closely Related Fruit Fly Species Living at Different Latitudes Diverge in Their Circadian Clock Anatomy and Rhythmic Behavior.
    Beauchamp M; Bertolini E; Deppisch P; Steubing J; Menegazzi P; Helfrich-Förster C
    J Biol Rhythms; 2018 Dec; 33(6):602-613. PubMed ID: 30203704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adult emergence rhythm of fruit flies Drosophila melanogaster under seminatural conditions.
    De J; Varma V; Sharma VK
    J Biol Rhythms; 2012 Aug; 27(4):280-6. PubMed ID: 22855572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly.
    Iiams SE; Lugena AB; Zhang Y; Hayden AN; Merlin C
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25214-25221. PubMed ID: 31767753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronobiology: The Circadian Clock under Extreme Photoperiods.
    Doležel D
    Curr Biol; 2019 Nov; 29(22):R1176-R1178. PubMed ID: 31743671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks.
    Ivanchenko M; Stanewsky R; Giebultowicz JM
    J Biol Rhythms; 2001 Jun; 16(3):205-15. PubMed ID: 11407780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light triggers a network switch between circadian morning and evening oscillators controlling behaviour during daily temperature cycles.
    Lorber C; Leleux S; Stanewsky R; Lamaze A
    PLoS Genet; 2022 Nov; 18(11):e1010487. PubMed ID: 36367867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural Network Interactions Modulate CRY-Dependent Photoresponses in
    Lamba P; Foley LE; Emery P
    J Neurosci; 2018 Jul; 38(27):6161-6171. PubMed ID: 29875268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal cues act through the circadian clock and pigment-dispersing factor to control EYES ABSENT and downstream physiological changes.
    Hidalgo S; Anguiano M; Tabuloc CA; Chiu JC
    Curr Biol; 2023 Feb; 33(4):675-687.e5. PubMed ID: 36708710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of Daily Locomotor Activity Patterns in
    Shaw B; Fountain M; Wijnen H
    J Biol Rhythms; 2019 Oct; 34(5):463-481. PubMed ID: 31436123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association between circadian clock genes and diapause incidence in Drosophila triauraria.
    Yamada H; Yamamoto MT
    PLoS One; 2011; 6(12):e27493. PubMed ID: 22164210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Tug-of-War between Cryptochrome and the Visual System Allows the Adaptation of Evening Activity to Long Photoperiods in Drosophila melanogaster.
    Kistenpfennig C; Nakayama M; Nihara R; Tomioka K; Helfrich-Förster C; Yoshii T
    J Biol Rhythms; 2018 Feb; 33(1):24-34. PubMed ID: 29179610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoperiodic diapause under the control of circadian clock genes in an insect.
    Ikeno T; Tanaka SI; Numata H; Goto SG
    BMC Biol; 2010 Sep; 8():116. PubMed ID: 20815865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation of
    Deppisch P; Prutscher JM; Pegoraro M; Tauber E; Wegener C; Helfrich-Förster C
    J Biol Rhythms; 2022 Apr; 37(2):185-201. PubMed ID: 35301885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.