These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 30269385)

  • 41. Feeding and adrenal entrainment stimuli are both necessary for normal circadian oscillation of peripheral clocks in mice housed under different photoperiods.
    Ikeda Y; Sasaki H; Ohtsu T; Shiraishi T; Tahara Y; Shibata S
    Chronobiol Int; 2015 Mar; 32(2):195-210. PubMed ID: 25286135
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular Correlates of Circadian Clocks in Fruit Fly Drosophila melanogaster Populations Exhibiting early and late Emergence Chronotypes.
    Nikhil KL; Abhilash L; Sharma VK
    J Biol Rhythms; 2016 Apr; 31(2):125-41. PubMed ID: 26833082
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Pyrexia transient receptor potential channel mediates circadian clock synchronization to low temperature cycles in Drosophila melanogaster.
    Wolfgang W; Simoni A; Gentile C; Stanewsky R
    Proc Biol Sci; 2013 Oct; 280(1768):20130959. PubMed ID: 23926145
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Temperature sensitivity of circadian clocks is conserved across Drosophila species melanogaster, malerkotliana and ananassae.
    Prabhakaran PM; Sheeba V
    Chronobiol Int; 2014 Nov; 31(9):1008-16. PubMed ID: 25051431
    [TBL] [Abstract][Full Text] [Related]  

  • 45. "The Environment is Everything That Isn't Me": Molecular Mechanisms and Evolutionary Dynamics of Insect Clocks in Variable Surroundings.
    Rivas GB; Bauzer LG; Meireles-Filho AC
    Front Physiol; 2015; 6():400. PubMed ID: 26793115
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Circadian consequence of socio-sexual interactions in fruit flies Drosophila melanogaster.
    Lone SR; Sharma VK
    PLoS One; 2011; 6(12):e28336. PubMed ID: 22194827
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Connectomic analysis of the
    Shafer OT; Gutierrez GJ; Li K; Mildenhall A; Spira D; Marty J; Lazar AA; Fernandez MP
    Elife; 2022 Jun; 11():. PubMed ID: 35766361
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Circadian clocks in changing weather and seasons: lessons from the picoalga Ostreococcus tauri.
    Pfeuty B; Thommen Q; Corellou F; Djouani-Tahri el B; Bouget FY; Lefranc M
    Bioessays; 2012 Sep; 34(9):781-90. PubMed ID: 22806346
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The circadian clock uses different environmental time cues to synchronize emergence and locomotion of the solitary bee Osmia bicornis.
    Beer K; Schenk M; Helfrich-Förster C; Holzschuh A
    Sci Rep; 2019 Nov; 9(1):17748. PubMed ID: 31780704
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acclimation of circadian rhythms in woodland strawberries (Fragaria vesca L.) to Arctic and mid-latitude photoperiods.
    Faehn C; Reichelt M; Mithöfer A; Hytönen T; Mølmann J; Jaakola L
    BMC Plant Biol; 2023 Oct; 23(1):483. PubMed ID: 37817085
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inducible Reporter Lines for Tissue-specific Monitoring of
    Mather LM; Cholak ME; Morfoot CM; Curro KC; Love J; Cavanaugh DJ
    J Biol Rhythms; 2023 Feb; 38(1):44-63. PubMed ID: 36495136
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of clock-related proteins and neuropeptides in Drosophila littoralis and their putative role in diapause.
    Manoli G; Zandawala M; Yoshii T; Helfrich-Förster C
    J Comp Neurol; 2023 Oct; 531(15):1525-1549. PubMed ID: 37493077
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aging Affects the Capacity of Photoperiodic Adaptation Downstream from the Central Molecular Clock.
    Buijink MR; Olde Engberink AHO; Wit CB; Almog A; Meijer JH; Rohling JHT; Michel S
    J Biol Rhythms; 2020 Apr; 35(2):167-179. PubMed ID: 31983261
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pigment-dispersing factor and CCHamide1 in the
    Kuwano R; Katsura M; Iwata M; Yokosako T; Yoshii T
    Chronobiol Int; 2023 Mar; 40(3):284-299. PubMed ID: 36786215
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phosphorylation, disorder, and phase separation govern the behavior of Frequency in the fungal circadian clock.
    Tariq D; Maurici N; Bartholomai BM; Chandrasekaran S; Dunlap JC; Bah A; Crane BR
    Elife; 2024 Mar; 12():. PubMed ID: 38526948
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Setting the clock--by nature: circadian rhythm in the fruitfly Drosophila melanogaster.
    Peschel N; Helfrich-Förster C
    FEBS Lett; 2011 May; 585(10):1435-42. PubMed ID: 21354415
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetics and molecular biology of rhythms in Drosophila and other insects.
    Hall JC
    Adv Genet; 2003; 48():1-280. PubMed ID: 12593455
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Avian circannual clocks: adaptive significance and possible involvement of energy turnover in their proximate control.
    Wikelski M; Martin LB; Scheuerlein A; Robinson MT; Robinson ND; Helm B; Hau M; Gwinner E
    Philos Trans R Soc Lond B Biol Sci; 2008 Jan; 363(1490):411-23. PubMed ID: 17638688
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Light activates output from evening neurons and inhibits output from morning neurons in the Drosophila circadian clock.
    Picot M; Cusumano P; Klarsfeld A; Ueda R; Rouyer F
    PLoS Biol; 2007 Nov; 5(11):e315. PubMed ID: 18044989
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Circadian Clock Properties and Their Relationships as a Function of Free-Running Period in Drosophila melanogaster.
    Srivastava M; Varma V; Abhilash L; Sharma VK; Sheeba V
    J Biol Rhythms; 2019 Jun; 34(3):231-248. PubMed ID: 30939971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.