BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30269803)

  • 1. Getting the Best Out of Advanced Rehabilitation Technology for the Lower Limbs: Minding Motor Learning Principles.
    Spiess MR; Steenbrink F; Esquenazi A
    PM R; 2018 Sep; 10(9 Suppl 2):S165-S173. PubMed ID: 30269803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotics in Lower-Limb Rehabilitation after Stroke.
    Zhang X; Yue Z; Wang J
    Behav Neurol; 2017; 2017():3731802. PubMed ID: 28659660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual Reality to Assess and Treat Lower Extremity Disorders in Post-stroke Patients.
    Luque-Moreno C; Oliva-Pascual-Vaca A; Kiper P; Rodríguez-Blanco C; Agostini M; Turolla A
    Methods Inf Med; 2016; 55(1):89-92. PubMed ID: 26660161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Randomized Clinical Trial of a Functional Electrical Stimulation Mimic to Gait Promotes Motor Recovery and Brain Remodeling in Acute Stroke.
    Zheng X; Chen D; Yan T; Jin D; Zhuang Z; Tan Z; Wu W
    Behav Neurol; 2018; 2018():8923520. PubMed ID: 30662575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Lower-Limb Robotics to Enhance Practice and Participation in Individuals With Neurological Conditions.
    Jayaraman A; Burt S; Rymer WZ
    Pediatr Phys Ther; 2017 Jul; 29 Suppl 3():S48-S56. PubMed ID: 28654477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurorobotic and hybrid management of lower limb motor disorders: a review.
    Moreno JC; Del Ama AJ; de Los Reyes-Guzmán A; Gil-Agudo A; Ceres R; Pons JL
    Med Biol Eng Comput; 2011 Oct; 49(10):1119-30. PubMed ID: 21847596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Gait Training With Body Weight Support on a Treadmill Versus Overground in Individuals With Stroke.
    Gama GL; Celestino ML; Barela JA; Forrester L; Whitall J; Barela AM
    Arch Phys Med Rehabil; 2017 Apr; 98(4):738-745. PubMed ID: 28034719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stroke Rehabilitation: Therapy Robots and Assistive Devices.
    Klamroth-Marganska V
    Adv Exp Med Biol; 2018; 1065():579-587. PubMed ID: 30051408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equipment specifications for supported treadmill ambulation training.
    Wilson MS; Qureshy H; Protas EJ; Holmes SA; Krouskop TA; Sherwood AM
    J Rehabil Res Dev; 2000; 37(4):415-22. PubMed ID: 11028697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical correlation between motor evoked potentials and gait recovery in poststroke patients.
    Piron L; Piccione F; Tonin P; Dam M
    Arch Phys Med Rehabil; 2005 Sep; 86(9):1874-8. PubMed ID: 16181957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait parameters associated with responsiveness to treadmill training with body-weight support after stroke: an exploratory study.
    Mulroy SJ; Klassen T; Gronley JK; Eberly VJ; Brown DA; Sullivan KJ
    Phys Ther; 2010 Feb; 90(2):209-23. PubMed ID: 20022996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of constraint-induced movement therapy for lower limbs on measurements of functional mobility and postural balance in subjects with stroke: a randomized controlled trial.
    E Silva EMGS; Ribeiro TS; da Silva TCC; Costa MFP; Cavalcanti FADC; Lindquist ARR
    Top Stroke Rehabil; 2017 Dec; 24(8):555-561. PubMed ID: 28859603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor learning during poststroke gait rehabilitation: a case study.
    Kesar TM; Sauer MJ; Binder-Macleod SA; Reisman DS
    J Neurol Phys Ther; 2014 Jul; 38(3):183-9. PubMed ID: 24933501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency repetitive transcranial magnetic stimulation enhanced treadmill training effects on gait performance in individuals with chronic stroke: A double-blinded randomized controlled pilot trial.
    Wang RY; Wang FY; Huang SF; Yang YR
    Gait Posture; 2019 Feb; 68():382-387. PubMed ID: 30586670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of Neuromuscular Electrical Stimulation on Lower Limbs of Patients With Hemiplegia After Chronic Stroke: A Systematic Review.
    Hong Z; Sui M; Zhuang Z; Liu H; Zheng X; Cai C; Jin D
    Arch Phys Med Rehabil; 2018 May; 99(5):1011-1022.e1. PubMed ID: 29357280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study.
    Hornby TG; Campbell DD; Kahn JH; Demott T; Moore JL; Roth HR
    Stroke; 2008 Jun; 39(6):1786-92. PubMed ID: 18467648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of single-session dual-tDCS before physical therapy on lower-limb performance in sub-acute stroke patients: A randomized sham-controlled crossover study.
    Klomjai W; Aneksan B; Pheungphrarattanatrai A; Chantanachai T; Choowong N; Bunleukhet S; Auvichayapat P; Nilanon Y; Hiengkaew V
    Ann Phys Rehabil Med; 2018 Sep; 61(5):286-291. PubMed ID: 29763676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mirror therapy for improving lower limb motor function and mobility after stroke: A systematic review and meta-analysis.
    Broderick P; Horgan F; Blake C; Ehrensberger M; Simpson D; Monaghan K
    Gait Posture; 2018 Jun; 63():208-220. PubMed ID: 29775908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locomotor therapy in neurorehabilitation.
    Hesse S
    NeuroRehabilitation; 2001; 16(3):133-9. PubMed ID: 11790898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.