BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 30269949)

  • 21. Distinct targeting and fusion functions of the PX and SNARE domains of yeast vacuolar Vam7p.
    Fratti RA; Wickner W
    J Biol Chem; 2007 Apr; 282(17):13133-8. PubMed ID: 17347148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Excess vacuolar SNAREs drive lysis and Rab bypass fusion.
    Starai VJ; Jun Y; Wickner W
    Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13551-8. PubMed ID: 17699614
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The vacuolar V1/V0-ATPase is involved in the release of the HOPS subunit Vps41 from vacuoles, vacuole fragmentation and fusion.
    Takeda K; Cabrera M; Rohde J; Bausch D; Jensen ON; Ungermann C
    FEBS Lett; 2008 Apr; 582(10):1558-63. PubMed ID: 18405665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New component of the vacuolar class C-Vps complex couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion.
    Wurmser AE; Sato TK; Emr SD
    J Cell Biol; 2000 Oct; 151(3):551-62. PubMed ID: 11062257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Minimal membrane docking requirements revealed by reconstitution of Rab GTPase-dependent membrane fusion from purified components.
    Stroupe C; Hickey CM; Mima J; Burfeind AS; Wickner W
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17626-33. PubMed ID: 19826089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AP-3 vesicle uncoating occurs after HOPS-dependent vacuole tethering.
    Schoppe J; Mari M; Yavavli E; Auffarth K; Cabrera M; Walter S; Fröhlich F; Ungermann C
    EMBO J; 2020 Oct; 39(20):e105117. PubMed ID: 32840906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphoinositides control the localization of HOPS subunit VPS41, which together with VPS33 mediates vacuole fusion in plants.
    Brillada C; Zheng J; Krüger F; Rovira-Diaz E; Askani JC; Schumacher K; Rojas-Pierce M
    Proc Natl Acad Sci U S A; 2018 Aug; 115(35):E8305-E8314. PubMed ID: 30104351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic association of the PI3P-interacting Mon1-Ccz1 GEF with vacuoles is controlled through its phosphorylation by the type 1 casein kinase Yck3.
    Lawrence G; Brown CC; Flood BA; Karunakaran S; Cabrera M; Nordmann M; Ungermann C; Fratti RA
    Mol Biol Cell; 2014 May; 25(10):1608-19. PubMed ID: 24623720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Membrane fusion catalyzed by a Rab, SNAREs, and SNARE chaperones is accompanied by enhanced permeability to small molecules and by lysis.
    Zucchi PC; Zick M
    Mol Biol Cell; 2011 Dec; 22(23):4635-46. PubMed ID: 21976702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HOPS initiates vacuole docking by tethering membranes before trans-SNARE complex assembly.
    Hickey CM; Wickner W
    Mol Biol Cell; 2010 Jul; 21(13):2297-305. PubMed ID: 20462954
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles.
    Wickner W
    Annu Rev Cell Dev Biol; 2010; 26():115-36. PubMed ID: 20521906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion.
    Wang L; Merz AJ; Collins KM; Wickner W
    J Cell Biol; 2003 Feb; 160(3):365-74. PubMed ID: 12566429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asymmetric Rab activation of vacuolar HOPS to catalyze SNARE complex assembly.
    Torng T; Song H; Wickner W
    Mol Biol Cell; 2020 May; 31(10):1060-1068. PubMed ID: 32160129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trans-SNARE complex assembly and yeast vacuole membrane fusion.
    Collins KM; Wickner WT
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8755-60. PubMed ID: 17502611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deleting the DAG kinase Dgk1 augments yeast vacuole fusion through increased Ypt7 activity and altered membrane fluidity.
    Miner GE; Starr ML; Hurst LR; Fratti RA
    Traffic; 2017 May; 18(5):315-329. PubMed ID: 28276191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subunit organization and Rab interactions of Vps-C protein complexes that control endolysosomal membrane traffic.
    Plemel RL; Lobingier BT; Brett CL; Angers CG; Nickerson DP; Paulsel A; Sprague D; Merz AJ
    Mol Biol Cell; 2011 Apr; 22(8):1353-63. PubMed ID: 21325627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7.
    Nordmann M; Cabrera M; Perz A; Bröcker C; Ostrowicz C; Engelbrecht-Vandré S; Ungermann C
    Curr Biol; 2010 Sep; 20(18):1654-9. PubMed ID: 20797862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cargo Release from Myosin V Requires the Convergence of Parallel Pathways that Phosphorylate and Ubiquitylate the Cargo Adaptor.
    Wong S; Hepowit NL; Port SA; Yau RG; Peng Y; Azad N; Habib A; Harpaz N; Schuldiner M; Hughson FM; MacGurn JA; Weisman LS
    Curr Biol; 2020 Nov; 30(22):4399-4412.e7. PubMed ID: 32916113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The CORVET complex promotes tethering and fusion of Rab5/Vps21-positive membranes.
    Balderhaar HJ; Lachmann J; Yavavli E; Bröcker C; Lürick A; Ungermann C
    Proc Natl Acad Sci U S A; 2013 Mar; 110(10):3823-8. PubMed ID: 23417307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Defined subunit arrangement and rab interactions are required for functionality of the HOPS tethering complex.
    Ostrowicz CW; Bröcker C; Ahnert F; Nordmann M; Lachmann J; Peplowska K; Perz A; Auffarth K; Engelbrecht-Vandré S; Ungermann C
    Traffic; 2010 Oct; 11(10):1334-46. PubMed ID: 20604902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.