These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 30270044)

  • 1. Protein AMPylation by an Evolutionarily Conserved Pseudokinase.
    Sreelatha A; Yee SS; Lopez VA; Park BC; Kinch LN; Pilch S; Servage KA; Zhang J; Jiou J; Karasiewicz-Urbańska M; Łobocka M; Grishin NV; Orth K; Kucharczyk R; Pawłowski K; Tomchick DR; Tagliabracci VS
    Cell; 2018 Oct; 175(3):809-821.e19. PubMed ID: 30270044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of selenoprotein O substrates using a biotinylated ATP analog.
    Mukherjee M; Sreelatha A
    Methods Enzymol; 2022; 662():275-296. PubMed ID: 35101215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudokinases: Flipping the ATP for AMPylation.
    Bardwell L
    Curr Biol; 2019 Jan; 29(1):R23-R25. PubMed ID: 30620911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel protein kinase-like domain in a selenoprotein, widespread in the tree of life.
    Dudkiewicz M; Szczepińska T; Grynberg M; Pawłowski K
    PLoS One; 2012; 7(2):e32138. PubMed ID: 22359664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of mammalian selenoprotein o: a redox-active mitochondrial protein.
    Han SJ; Lee BC; Yim SH; Gladyshev VN; Lee SR
    PLoS One; 2014; 9(4):e95518. PubMed ID: 24751718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redefining pseudokinases: A look at the untapped enzymatic potential of pseudokinases.
    Pon A; Osinski A; Sreelatha A
    IUBMB Life; 2023 Apr; 75(4):370-376. PubMed ID: 36602414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Young to Old: AMPylation Hits the Brain.
    Sieber SA; Cappello S; Kielkowski P
    Cell Chem Biol; 2020 Jul; 27(7):773-779. PubMed ID: 32521229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting AMPylation through the lens of Fic enzymes.
    Gulen B; Itzen A
    Trends Microbiol; 2022 Apr; 30(4):350-363. PubMed ID: 34531089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. rAMPing Up Stress Signaling: Protein AMPylation in Metazoans.
    Truttmann MC; Ploegh HL
    Trends Cell Biol; 2017 Aug; 27(8):608-620. PubMed ID: 28433487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner.
    Bailey FP; Byrne DP; Oruganty K; Eyers CE; Novotny CJ; Shokat KM; Kannan N; Eyers PA
    Biochem J; 2015 Apr; 467(1):47-62. PubMed ID: 25583260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intersection of selenoproteins and kinase signalling.
    Lenart A; Pawłowski K
    Biochim Biophys Acta; 2013 Jul; 1834(7):1279-84. PubMed ID: 23541531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Alarmone Diadenosine Tetraphosphate as a Cosubstrate for Protein AMPylation.
    Frese M; Saumer P; Yuan Y; Herzog D; Höpfner D; Itzen A; Marx A
    Angew Chem Int Ed Engl; 2023 Feb; 62(8):e202213279. PubMed ID: 36524454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for discovering catalytic activities for pseudokinases.
    Black MH; Gradowski M; Pawłowski K; Tagliabracci VS
    Methods Enzymol; 2022; 667():575-610. PubMed ID: 35525554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymes Involved in AMPylation and deAMPylation.
    Casey AK; Orth K
    Chem Rev; 2018 Feb; 118(3):1199-1215. PubMed ID: 28819965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenylated proteins in mouse B16-F10 melanoma cells cluster in functional categories: a new paradigm for cellular regulation?
    Fatima N; Alomari M; Belov L; Shen Y; Christopherson RI
    Nucleosides Nucleotides Nucleic Acids; 2022; 41(3):255-263. PubMed ID: 34738868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudokinases repurpose flexibility signatures associated with the protein kinase fold for noncatalytic roles.
    Paul A; Subhadarshini S; Srinivasan N
    Proteins; 2022 Mar; 90(3):747-764. PubMed ID: 34708889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experimental strategy for the identification of AMPylation targets from complex protein samples.
    Pieles K; Glatter T; Harms A; Schmidt A; Dehio C
    Proteomics; 2014 May; 14(9):1048-52. PubMed ID: 24677795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FICD activity and AMPylation remodelling modulate human neurogenesis.
    Kielkowski P; Buchsbaum IY; Kirsch VC; Bach NC; Drukker M; Cappello S; Sieber SA
    Nat Commun; 2020 Jan; 11(1):517. PubMed ID: 31980631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and evaluation of 2-ethynyl-adenosine-5'-triphosphate as a chemical reporter for protein AMPylation.
    Creech C; Kanaujia M; Causey CP
    Org Biomol Chem; 2015 Aug; 13(31):8550-5. PubMed ID: 26173047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and structural insights into the mechanism of AMPylation by VopS Fic domain.
    Luong P; Kinch LN; Brautigam CA; Grishin NV; Tomchick DR; Orth K
    J Biol Chem; 2010 Jun; 285(26):20155-63. PubMed ID: 20410310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.