BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 30270183)

  • 1. Latrunculin A Accelerates Actin Filament Depolymerization in Addition to Sequestering Actin Monomers.
    Fujiwara I; Zweifel ME; Courtemanche N; Pollard TD
    Curr Biol; 2018 Oct; 28(19):3183-3192.e2. PubMed ID: 30270183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multicomponent depolymerization of actin filament pointed ends by cofilin and cyclase-associated protein depends upon filament age.
    Towsif EM; Miller BA; Ulrichs H; Shekhar S
    Eur J Cell Biol; 2024 Jun; 103(2):151423. PubMed ID: 38796920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An unexplained sequestration of latrunculin A is required in neutrophils for inhibition of actin polymerization.
    Pring M; Cassimeris L; Zigmond SH
    Cell Motil Cytoskeleton; 2002 Jun; 52(2):122-30. PubMed ID: 12112154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of ADF/cofilin, Arp2/3 complex, capping protein and profilin in remodeling of branched actin filament networks.
    Blanchoin L; Pollard TD; Mullins RD
    Curr Biol; 2000 Oct; 10(20):1273-82. PubMed ID: 11069108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic evidence for a readily exchangeable nucleotide at the terminal subunit of the barbed ends of actin filaments.
    Teubner A; Wegner A
    Biochemistry; 1998 May; 37(20):7532-8. PubMed ID: 9585568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of Aip1 reveals a role in maintaining the actin monomer pool and an in vivo oligomer assembly pathway.
    Okreglak V; Drubin DG
    J Cell Biol; 2010 Mar; 188(6):769-77. PubMed ID: 20231387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ADF/Cofilin Accelerates Actin Dynamics by Severing Filaments and Promoting Their Depolymerization at Both Ends.
    Wioland H; Guichard B; Senju Y; Myram S; Lappalainen P; Jégou A; Romet-Lemonne G
    Curr Biol; 2017 Jul; 27(13):1956-1967.e7. PubMed ID: 28625781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Arabidopsis cyclase-associated protein 1 as the first nucleotide exchange factor for plant actin.
    Chaudhry F; Guérin C; von Witsch M; Blanchoin L; Staiger CJ
    Mol Biol Cell; 2007 Aug; 18(8):3002-14. PubMed ID: 17538023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twinfilin bypasses assembly conditions and actin filament aging to drive barbed end depolymerization.
    Shekhar S; Hoeprich GJ; Gelles J; Goode BL
    J Cell Biol; 2021 Jan; 220(1):. PubMed ID: 33226418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actophorin preferentially binds monomeric ADP-actin over ATP-bound actin: consequences for cell locomotion.
    Maciver SK; Weeds AG
    FEBS Lett; 1994 Jun; 347(2-3):251-6. PubMed ID: 8034013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymerization kinetics of ADP- and ADP-Pi-actin determined by fluorescence microscopy.
    Fujiwara I; Vavylonis D; Pollard TD
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8827-32. PubMed ID: 17517656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of the insertion of actin monomers between the barbed ends of actin filaments and barbed end-bound insertin.
    Gaertner A; Wegner A
    J Muscle Res Cell Motil; 1991 Feb; 12(1):27-36. PubMed ID: 2050808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actin disassembly by cofilin, coronin, and Aip1 occurs in bursts and is inhibited by barbed-end cappers.
    Kueh HY; Charras GT; Mitchison TJ; Brieher WM
    J Cell Biol; 2008 Jul; 182(2):341-53. PubMed ID: 18663144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryo-electron microscopy structures of pyrene-labeled ADP-P
    Chou SZ; Pollard TD
    Nat Commun; 2020 Nov; 11(1):5897. PubMed ID: 33214556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Depolymerization of Actin Filaments by ADF/Cofilin and Monomer Funneling by Capping Protein Cooperate to Accelerate Barbed-End Growth.
    Shekhar S; Carlier MF
    Curr Biol; 2017 Jul; 27(13):1990-1998.e5. PubMed ID: 28625780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails.
    Rosenblatt J; Agnew BJ; Abe H; Bamburg JR; Mitchison TJ
    J Cell Biol; 1997 Mar; 136(6):1323-32. PubMed ID: 9087446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of profilin with the barbed end of actin filaments.
    Courtemanche N; Pollard TD
    Biochemistry; 2013 Sep; 52(37):6456-66. PubMed ID: 23947767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of interaction of Acanthamoeba actophorin (ADF/Cofilin) with actin filaments.
    Blanchoin L; Pollard TD
    J Biol Chem; 1999 May; 274(22):15538-46. PubMed ID: 10336448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of phosphate to F-ADP-actin and role of F-ADP-Pi-actin in ATP-actin polymerization.
    Carlier MF; Pantaloni D
    J Biol Chem; 1988 Jan; 263(2):817-25. PubMed ID: 3335528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic severing of actin filaments by actin depolymerizing factor/cofilin controls the emergence of a steady dynamical regime.
    Roland J; Berro J; Michelot A; Blanchoin L; Martiel JL
    Biophys J; 2008 Mar; 94(6):2082-94. PubMed ID: 18065447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.