These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 3027043)
1. Characterization of bromoethanesulfonate-resistant mutants of Methanococcus voltae: evidence of a coenzyme M transport system. Santoro N; Konisky J J Bacteriol; 1987 Feb; 169(2):660-5. PubMed ID: 3027043 [TBL] [Abstract][Full Text] [Related]
2. Transport of coenzyme M (2-mercaptoethanesulfonic acid) and methylcoenzyme M [(2-methylthio)ethanesulfonic acid] in Methanococcus voltae: identification of specific and general uptake systems. Dybas M; Konisky J J Bacteriol; 1989 Nov; 171(11):5866-71. PubMed ID: 2509421 [TBL] [Abstract][Full Text] [Related]
3. Reversal of 2-bromoethanesulfonate inhibition of methanogenesis in Methanosarcina sp. Smith MR J Bacteriol; 1983 Nov; 156(2):516-23. PubMed ID: 6313605 [TBL] [Abstract][Full Text] [Related]
4. Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium. Balch WE; Wolfe RS J Bacteriol; 1979 Jan; 137(1):264-73. PubMed ID: 33148 [TBL] [Abstract][Full Text] [Related]
5. Genetic transformation in the methanogen Methanococcus voltae PS. Bertani G; Baresi L J Bacteriol; 1987 Jun; 169(6):2730-8. PubMed ID: 3034867 [TBL] [Abstract][Full Text] [Related]
6. Evidence that the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate is a product of the methylreductase reaction in Methanobacterium. Bobik TA; Olson KD; Noll KM; Wolfe RS Biochem Biophys Res Commun; 1987 Dec; 149(2):455-60. PubMed ID: 3122735 [TBL] [Abstract][Full Text] [Related]
7. Methanogenesis stimulation and inhibition for the production of different target electrobiofuels in microbial electrolysis cells through an on-demand control strategy using the coenzyme M and 2-bromoethanesulfonate. Park SG; Rhee C; Shin SG; Shin J; Mohamed HO; Choi YJ; Chae KJ Environ Int; 2019 Oct; 131():105006. PubMed ID: 31330362 [TBL] [Abstract][Full Text] [Related]
8. Isolation of a coenzyme M-auxotrophic mutant and transformation by electroporation in Methanococcus voltae. Micheletti PA; Sment KA; Konisky J J Bacteriol; 1991 Jun; 173(11):3414-8. PubMed ID: 1904435 [TBL] [Abstract][Full Text] [Related]
9. Excretion of amino acids by 1,2,4-triazole-3-alanine-resistant mutants of Methanococcus voltae. Sment KA; Konisky J Appl Environ Microbiol; 1989 May; 55(5):1295-7. PubMed ID: 2757385 [TBL] [Abstract][Full Text] [Related]
10. Interaction of coenzyme M and formaldehyde in methanogenesis. Romesser JA; Wolfe RS Biochem J; 1981 Sep; 197(3):565-71. PubMed ID: 6798970 [TBL] [Abstract][Full Text] [Related]
11. Identification of methyl coenzyme M as an intermediate in methanogenesis from acetate in Methanosarcina spp. Lovley DR; White RH; Ferry JG J Bacteriol; 1984 Nov; 160(2):521-5. PubMed ID: 6438056 [TBL] [Abstract][Full Text] [Related]
12. Incorporation of coenzyme M into component C of methylcoenzyme M methylreductase during in vitro methanogenesis. Hartzell PL; Donnelly MI; Wolfe RS J Biol Chem; 1987 Apr; 262(12):5581-6. PubMed ID: 3106338 [TBL] [Abstract][Full Text] [Related]
13. Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium. Bobik TA; Wolfe RS Proc Natl Acad Sci U S A; 1988 Jan; 85(1):60-3. PubMed ID: 3124103 [TBL] [Abstract][Full Text] [Related]
14. Coupling of methyl coenzyme M reduction with carbon dioxide activation in extracts of Methanobacterium thermoautotrophicum. Romesser JA; Wolfe RS J Bacteriol; 1982 Nov; 152(2):840-7. PubMed ID: 6813316 [TBL] [Abstract][Full Text] [Related]
15. The role of tetrahydromethanopterin and cytoplasmic cofactor in methane synthesis. Sauer FD; Blackwell BA; Mahadevan S Biochem J; 1986 Apr; 235(2):453-8. PubMed ID: 3091008 [TBL] [Abstract][Full Text] [Related]
16. Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid). Balch WE; Wolfe RS J Bacteriol; 1979 Jan; 137(1):256-63. PubMed ID: 104960 [TBL] [Abstract][Full Text] [Related]
17. In vitro methane and methyl coenzyme M formation from acetate: evidence that acetyl-CoA is the required intermediate activated form of acetate. Grahame DA; Stadtman TC Biochem Biophys Res Commun; 1987 Aug; 147(1):254-8. PubMed ID: 3115259 [TBL] [Abstract][Full Text] [Related]
18. Is coenzyme M bound to factor F430 in methanogenic bacteria? Experiments with Methanobrevibacter ruminantium. Hüster R; Gilles HH; Thauer RK Eur J Biochem; 1985 Apr; 148(1):107-11. PubMed ID: 3920049 [TBL] [Abstract][Full Text] [Related]
19. On the role of N-7-mercaptoheptanoyl-O-phospho-L-threonine (component B) in the enzymatic reduction of methyl-coenzyme M to methane. Ellermann J; Kobelt A; Pfaltz A; Thauer RK FEBS Lett; 1987 Aug; 220(2):358-62. PubMed ID: 3111890 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of inhibition of aliphatic epoxide carboxylation by the coenzyme M analog 2-bromoethanesulfonate. Boyd JM; Clark DD; Kofoed MA; Ensign SA J Biol Chem; 2010 Aug; 285(33):25232-42. PubMed ID: 20551308 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]