These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 30270471)

  • 1. Concise Review: Human Pluripotent Stem Cells for the Modeling of Pancreatic β-Cell Pathology.
    Balboa D; Saarimäki-Vire J; Otonkoski T
    Stem Cells; 2019 Jan; 37(1):33-41. PubMed ID: 30270471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene Editing and Human Pluripotent Stem Cells: Tools for Advancing Diabetes Disease Modeling and Beta-Cell Development.
    Millette K; Georgia S
    Curr Diab Rep; 2017 Oct; 17(11):116. PubMed ID: 28980194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human pluripotent stem cell based islet models for diabetes research.
    Balboa D; Otonkoski T
    Best Pract Res Clin Endocrinol Metab; 2015 Dec; 29(6):899-909. PubMed ID: 26696518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances and potential applications of human pluripotent stem cell-derived pancreatic β cells.
    Zhou Z; Ma X; Zhu S
    Acta Biochim Biophys Sin (Shanghai); 2020 Jul; 52(7):708-715. PubMed ID: 32445468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is Transforming Stem Cells to Pancreatic Beta Cells Still the Holy Grail for Type 2 Diabetes?
    Kahraman S; Okawa ER; Kulkarni RN
    Curr Diab Rep; 2016 Aug; 16(8):70. PubMed ID: 27313072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a Functional Cure for Diabetes Using Stem Cell-Derived Beta Cells: Are We There Yet?
    Bourgeois S; Sawatani T; Van Mulders A; De Leu N; Heremans Y; Heimberg H; Cnop M; Staels W
    Cells; 2021 Jan; 10(1):. PubMed ID: 33477961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Editing Human Pluripotent Stem Cells to Model β-Cell Disease and Unmask Novel Genetic Modifiers.
    George MN; Leavens KF; Gadue P
    Front Endocrinol (Lausanne); 2021; 12():682625. PubMed ID: 34149620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling different types of diabetes using human pluripotent stem cells.
    Abdelalim EM
    Cell Mol Life Sci; 2021 Mar; 78(6):2459-2483. PubMed ID: 33242105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pancreatic Endoderm-Derived From Diabetic Patient-Specific Induced Pluripotent Stem Cell Generates Glucose-Responsive Insulin-Secreting Cells.
    Rajaei B; Shamsara M; Amirabad LM; Massumi M; Sanati MH
    J Cell Physiol; 2017 Oct; 232(10):2616-2625. PubMed ID: 27306424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stem cell-based multi-tissue platforms to model human autoimmune diabetes.
    Leavens KF; Alvarez-Dominguez JR; Vo LT; Russ HA; Parent AV
    Mol Metab; 2022 Dec; 66():101610. PubMed ID: 36209784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient generation of functional pancreatic β-cells from human induced pluripotent stem cells.
    Yabe SG; Fukuda S; Takeda F; Nashiro K; Shimoda M; Okochi H
    J Diabetes; 2017 Feb; 9(2):168-179. PubMed ID: 27038181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of human pluripotent stem cells into β-cells: Potential and challenges.
    Quiskamp N; Bruin JE; Kieffer TJ
    Best Pract Res Clin Endocrinol Metab; 2015 Dec; 29(6):833-47. PubMed ID: 26696513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regenerative medicine for diabetes: differentiation of human pluripotent stem cells into functional β-cells in vitro and their proposed journey to clinical translation.
    Bose B; Katikireddy KR; Shenoy PS
    Vitam Horm; 2014; 95():223-48. PubMed ID: 24559920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene-edited human stem cell-derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice.
    Maxwell KG; Augsornworawat P; Velazco-Cruz L; Kim MH; Asada R; Hogrebe NJ; Morikawa S; Urano F; Millman JR
    Sci Transl Med; 2020 Apr; 12(540):. PubMed ID: 32321868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pluripotent stem cell replacement approaches to treat type 1 diabetes.
    Pellegrini S; Piemonti L; Sordi V
    Curr Opin Pharmacol; 2018 Dec; 43():20-26. PubMed ID: 30071348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monogenic Diabetes Modeling:
    Burgos JI; Vallier L; Rodríguez-Seguí SA
    Front Endocrinol (Lausanne); 2021; 12():692596. PubMed ID: 34295307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Induced Pluripotent Stem Cells in the Curative Treatment of Diabetes and Potential Impediments Ahead.
    Dadheech N; James Shapiro AM
    Adv Exp Med Biol; 2019; 1144():25-35. PubMed ID: 30569414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells.
    Kim EJ; Kang KH; Ju JH
    Korean J Intern Med; 2017 Jan; 32(1):42-61. PubMed ID: 28049282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. β Cell Replacement after Gene Editing of a Neonatal Diabetes-Causing Mutation at the Insulin Locus.
    Ma S; Viola R; Sui L; Cherubini V; Barbetti F; Egli D
    Stem Cell Reports; 2018 Dec; 11(6):1407-1415. PubMed ID: 30503261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Disease Modeling and Drug Discovery for Diabetes Mellitus Using Induced Pluripotent Stem Cells.
    Kawser Hossain M; Abdal Dayem A; Han J; Kumar Saha S; Yang GM; Choi HY; Cho SG
    Int J Mol Sci; 2016 Feb; 17(2):256. PubMed ID: 26907255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.