These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30270474)

  • 1. Direct Observation and Manipulation of Supramolecular Polymerization by High-Speed Atomic Force Microscopy.
    Fukui T; Uchihashi T; Sasaki N; Watanabe H; Takeuchi M; Sugiyasu K
    Angew Chem Int Ed Engl; 2018 Nov; 57(47):15465-15470. PubMed ID: 30270474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal resolution in high-speed atomic force microscopy for studying biological macromolecules in action.
    Umeda K; McArthur SJ; Kodera N
    Microscopy (Oxf); 2023 Apr; 72(2):151-161. PubMed ID: 36744614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-speed atomic force microscopy: imaging and force spectroscopy.
    Eghiaian F; Rico F; Colom A; Casuso I; Scheuring S
    FEBS Lett; 2014 Oct; 588(19):3631-8. PubMed ID: 24937145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-Triggered Disassembly of Molecular Motor-based Supramolecular Polymers Revealed by High-Speed AFM.
    van Ewijk C; Xu F; Maity S; Sheng J; Stuart MCA; Feringa BL; Roos WH
    Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202319387. PubMed ID: 38372499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Observation of Dynamic Movement of DNA Molecules in DNA Origami Imaged Using High-Speed AFM.
    Endo M; Sugiyama H
    Methods Mol Biol; 2018; 1814():213-224. PubMed ID: 29956235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caught in the Act: Mechanistic Insight into Supramolecular Polymerization-Driven Self-Replication from Real-Time Visualization.
    Maity S; Ottelé J; Santiago GM; Frederix PWJM; Kroon P; Markovitch O; Stuart MCA; Marrink SJ; Otto S; Roos WH
    J Am Chem Soc; 2020 Aug; 142(32):13709-13717. PubMed ID: 32786814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the nanostructure of supramolecular assemblies of hydrogen-bonded rosettes on graphite: an atomic force microscopy study.
    Schönherr H; Paraschiv V; Zapotoczny S; Crego-Calama M; Timmerman P; Frank CW; Vancso GJ; Reinhoudt DN
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5024-7. PubMed ID: 11929980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring mechanical properties with high-speed atomic force microscopy.
    Ganser C; Uchihashi T
    Microscopy (Oxf); 2024 Feb; 73(1):14-21. PubMed ID: 37916758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging on-surface hierarchical assembly of chiral supramolecular networks.
    Patera LL; Zou Z; Dri C; Africh C; Repp J; Comelli G
    Phys Chem Chem Phys; 2017 Sep; 19(36):24605-24612. PubMed ID: 28853744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution.
    Stamov DR; Stock E; Franz CM; Jähnke T; Haschke H
    Ultramicroscopy; 2015 Feb; 149():86-94. PubMed ID: 25486377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-organization of gold-containing hydrogen-bonded rosette assemblies on graphite surface.
    Vázquez-Campos S; Péter M; Dong M; Xu S; Xu W; Gersen H; Linderoth TR; Schönherr H; Besenbacher F; Crego-Calama M; Reinhoudt DN
    Langmuir; 2007 Sep; 23(20):10294-8. PubMed ID: 17722940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural dynamics of single molecules studied with high-speed atomic force microscopy.
    Henderson RM
    Expert Opin Drug Discov; 2015 Mar; 10(3):221-9. PubMed ID: 25549544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-speed atomic force microscopy for observing dynamic biomolecular processes.
    Ando T; Uchihashi T; Kodera N; Yamamoto D; Taniguchi M; Miyagi A; Yamashita H
    J Mol Recognit; 2007; 20(6):448-58. PubMed ID: 17902097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From high-resolution AFM topographs to atomic models of supramolecular assemblies.
    Scheuring S; Boudier T; Sturgis JN
    J Struct Biol; 2007 Aug; 159(2):268-76. PubMed ID: 17399998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed atomic force microscopy.
    Ando T
    Microscopy (Oxf); 2013 Feb; 62(1):81-93. PubMed ID: 23291302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of synthetic helical polymers by high-resolution atomic force microscopy.
    Kumaki J; Sakurai S; Yashima E
    Chem Soc Rev; 2009 Mar; 38(3):737-46. PubMed ID: 19322466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the lignin model compound supramolecular structure by combination of near-field scanning optical microscopy and atomic force microscopy.
    Micic M; Radotic K; Jeremic M; Djikanovic D; Kämmer SB
    Colloids Surf B Biointerfaces; 2004 Mar; 34(1):33-40. PubMed ID: 15261088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed atomic force microscopy and biomolecular processes.
    Uchihashi T; Ando T
    Methods Mol Biol; 2011; 736():285-300. PubMed ID: 21660734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.