These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30270923)

  • 1. Climate Process Team on Internal Wave-Driven Ocean Mixing.
    MacKinnon JA; Alford MH; Ansong JK; Arbic BK; Barna A; Briegleb BP; Bryan FO; Buijsman MC; Chassignet EP; Danabasoglu G; Diggs S; Griffies SM; Hallberg RW; Jayne SR; Jochum M; Klymak JM; Kunze E; Large WG; Legg S; Mater B; Melet AV; Merchant LM; Musgrave R; Nash JD; Norton NJ; Pickering A; Pinkel R; Polzin K; Simmons HL; St Laurent LC; Sun OM; Trossman DS; Waterhouse AF; Whalen CB; Zhao Z
    Bull Am Meteorol Soc; 2017 Nov; 98(11):2429-2454. PubMed ID: 30270923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overlooked Role of Mesoscale Winds in Powering Ocean Diapycnal Mixing.
    Jing Z; Wu L; Ma X; Chang P
    Sci Rep; 2016 Nov; 6():37180. PubMed ID: 27849059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intensified diapycnal mixing in the midlatitude western boundary currents.
    Jing Z; Wu L
    Sci Rep; 2014 Dec; 4():7412. PubMed ID: 25491363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep-ocean mixing driven by small-scale internal tides.
    Vic C; Naveira Garabato AC; Green JAM; Waterhouse AF; Zhao Z; Melet A; de Lavergne C; Buijsman MC; Stephenson GR
    Nat Commun; 2019 May; 10(1):2099. PubMed ID: 31068588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wind-current feedback is an energy sink for oceanic internal waves.
    Delpech A; Barkan R; Renault L; McWilliams J; Siyanbola OQ; Buijsman MC; Arbic BK
    Sci Rep; 2023 Apr; 13(1):5915. PubMed ID: 37041230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-Inertial Internal Gravity Waves in the Ocean.
    Alford MH; MacKinnon JA; Simmons HL; Nash JD
    Ann Rev Mar Sci; 2016; 8():95-123. PubMed ID: 26331898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interacting internal waves explain global patterns of interior ocean mixing.
    Dematteis G; Le Boyer A; Pollmann F; Polzin KL; Alford MH; Whalen CB; Lvov YV
    Nat Commun; 2024 Aug; 15(1):7468. PubMed ID: 39209838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intense mixing of lower thermocline water on the crest of the Mid-Atlantic Ridge.
    St Laurent LC; Thurnherr AM
    Nature; 2007 Aug; 448(7154):680-3. PubMed ID: 17687321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical modeling of internal tides and submesoscale turbulence in the US Caribbean regional ocean.
    Mukherjee S; Wilson D; Jobsis P; Habtes S
    Sci Rep; 2023 Jan; 13(1):1091. PubMed ID: 36658322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of fine-scale parameterizations at low latitudes of the North Pacific.
    Liang CR; Shang XD; Qi YF; Chen GY; Yu LH
    Sci Rep; 2018 Jul; 8(1):10281. PubMed ID: 29980702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observations of enhanced internal waves in an area of strong mesoscale variability in the southwestern East Sea (Japan Sea).
    Noh S; Nam S
    Sci Rep; 2020 Jun; 10(1):9068. PubMed ID: 32493918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolonged thermocline warming by near-inertial internal waves in the wakes of tropical cyclones.
    Gutiérrez Brizuela N; Alford MH; Xie SP; Sprintall J; Voet G; Warner SJ; Hughes K; Moum JN
    Proc Natl Acad Sci U S A; 2023 Jun; 120(26):e2301664120. PubMed ID: 37339203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ARCTIC CHANGE AND POSSIBLE INFLUENCE ON MID-LATITUDE CLIMATE AND WEATHER: A US CLIVAR White Paper.
    Cohen J; Zhang X; Francis J; Jung T; Kwok R; Overland J; Ballinger T; Blackport R; Bhatt US; Chen H; Coumou D; Feldstein S; Handorf D; Hell M; Henderson G; Ionita M; Kretschmer M; Laliberte F; Lee S; Linderholm H; Maslowski W; Rigor I; Routson C; Screen J; Semmler T; Singh D; Smith D; Stroeve J; Taylor PC; Vihma T; Wang M; Wang S; Wu Y; Wendisch M; Yoon J
    US CLIVAR Rep; 2018 Mar; n/a():. PubMed ID: 31633127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biologically Generated Mixing in the Ocean.
    Kunze E
    Ann Rev Mar Sci; 2019 Jan; 11():215-226. PubMed ID: 30606096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redistribution of energy available for ocean mixing by long-range propagation of internal waves.
    Alford MH
    Nature; 2003 May; 423(6936):159-62. PubMed ID: 12736682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A full year of turbulence measurements from a drift campaign in the Arctic Ocean 2019-2020.
    Schulz K; Mohrholz V; Fer I; Janout M; Hoppmann M; Schaffer J; Koenig Z
    Sci Data; 2022 Aug; 9(1):472. PubMed ID: 35922449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for enhanced mixing over rough topography in the abyssal ocean.
    Ledwell JR; Montgomery ET; Polzin KL; St. Laurent LC ; Schmitt RW; Toole JM
    Nature; 2000 Jan; 403(6766):179-82. PubMed ID: 10646599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface wind mixing in the Regional Ocean Modeling System (ROMS).
    Robertson R; Hartlipp P
    Geosci Lett; 2017; 4(1):24. PubMed ID: 32215239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations.
    Zhu Y; Zhang RH; Moum JN; Wang F; Li X; Li D
    Natl Sci Rev; 2022 Aug; 9(8):nwac044. PubMed ID: 35992235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observed three dimensional distributions of enhanced turbulence near the Luzon Strait.
    Wang J; Yu F; Nan F; Ren Q; Chen Z; Zheng T
    Sci Rep; 2021 Jul; 11(1):14835. PubMed ID: 34290332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.