These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30270952)

  • 1. A Source Term Approach for Generation of One-way Acoustic Waves in the Euler and Navier-Stokes equations.
    Maeda K; Colonius T
    Wave Motion; 2017 Dec; 75():36-49. PubMed ID: 30270952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Euler-Lagrange method considering bubble radial dynamics for modeling sonochemical reactors.
    Jamshidi R; Brenner G
    Ultrason Sonochem; 2014 Jan; 21(1):154-61. PubMed ID: 23751457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Semi-implicit Treatment of Porous Media in Steady-State CFD.
    Domaingo A; Langmayr D; Somogyi B; Almbauer R
    Transp Porous Media; 2016; 112():451-466. PubMed ID: 27429500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A three-dimensional non-hydrostatic coupled model for free surface - Subsurface variable - Density flows.
    Shokri N; Namin MM; Farhoudi J
    J Contam Hydrol; 2018 Sep; 216():38-49. PubMed ID: 30126718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalizations of incompressible and compressible Navier-Stokes equations to fractional time and multi-fractional space.
    Kavvas ML; Ercan A
    Sci Rep; 2022 Nov; 12(1):19337. PubMed ID: 36369242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Error estimates of finite element methods for fractional stochastic Navier-Stokes equations.
    Li X; Yang X
    J Inequal Appl; 2018; 2018(1):284. PubMed ID: 30839715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical sources for broadband shock-associated noise using the Navier-Stokes equations.
    Patel TK; Miller SAE
    J Acoust Soc Am; 2019 Dec; 146(6):4339. PubMed ID: 31893692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-volume WENO scheme for viscous compressible multicomponent flows.
    Coralic V; Colonius T
    J Comput Phys; 2014 Oct; 274():95-121. PubMed ID: 25110358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms.
    Zhao W; Zhang C; Frankel SH; Mongeau L
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2134-46. PubMed ID: 12430825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetically reduced local Navier-Stokes equations: an alternative approach to hydrodynamics.
    Karlin IV; Tomboulides AG; Frouzakis CE; Ansumali S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):035702. PubMed ID: 17025701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite Element Iterative Methods for the 3D Steady Navier--Stokes Equations.
    He Y
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regularity criterion for solutions of the three-dimensional Cahn-Hilliard-Navier-Stokes equations and associated computations.
    Gibbon JD; Pal N; Gupta A; Pandit R
    Phys Rev E; 2016 Dec; 94(6-1):063103. PubMed ID: 28085309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eulerian-Lagrangian method for simulation of cloud cavitation.
    Maeda K; Colonius T
    J Comput Phys; 2018 Oct; 371():994-1017. PubMed ID: 30739952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical equations for the vector potential and the velocity potential in incompressible irrotational Euler flows: a refined Bernoulli theorem.
    Ohkitani K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033010. PubMed ID: 26465559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic Navier-Stokes Equations on a Thin Spherical Domain.
    Brzeźniak Z; Dhariwal G; Le Gia QT
    Appl Math Optim; 2021; 84(2):1971-2035. PubMed ID: 34720249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniform Finite Element Error Estimates with Power-Type Asymptotic Constants for Unsteady Navier-Stokes Equations.
    Xie C; Wang K
    Entropy (Basel); 2022 Jul; 24(7):. PubMed ID: 35885169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment.
    Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical validation of a consistent axisymmetric lattice Boltzmann model.
    Reis T; Phillips TN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026703. PubMed ID: 18352144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radial Basis Function Finite Difference Method Based on Oseen Iteration for Solving Two-Dimensional Navier-Stokes Equations.
    Mu L; Feng X
    Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.