These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 30270977)

  • 21. Thermodynamic modelling and optimization of oxy-reforming and oxy-steam reforming of biogas by RSM.
    Özcan MD; Özcan O; Akın AN
    Environ Technol; 2020 Jan; 41(1):14-28. PubMed ID: 31264942
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature.
    Yu KM; Tong W; West A; Cheung K; Li T; Smith G; Guo Y; Tsang SC
    Nat Commun; 2012; 3():1230. PubMed ID: 23187630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Steam plasmatron gasification of distillers grains residue from ethanol production.
    Shie JL; Tsou FJ; Lin KL
    Bioresour Technol; 2010 Jul; 101(14):5571-7. PubMed ID: 20163957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen.
    Olah GA; Goeppert A; Czaun M; Mathew T; May RB; Prakash GK
    J Am Chem Soc; 2015 Jul; 137(27):8720-9. PubMed ID: 26086090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy-efficient syngas production through catalytic oxy-methane reforming reactions.
    Choudhary TV; Choudhary VR
    Angew Chem Int Ed Engl; 2008; 47(10):1828-47. PubMed ID: 18188848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of temperature, hydrogen/carbon monoxide ratio and trace element addition on methane production performance from syngas biomethanation.
    Li Y; Wang Z; He Z; Luo S; Su D; Jiang H; Zhou H; Xu Q
    Bioresour Technol; 2020 Jan; 295():122296. PubMed ID: 31670205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel study of methane-rich gas reforming to syngas and its kinetics over semicoke catalyst.
    Zhang G; Su A; Qu J; Du Y
    ScientificWorldJournal; 2014; 2014():707294. PubMed ID: 24959620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Syngas production by bi-reforming methane on an Ni-K-promoted catalyst using hydrotalcites and filamentous carbon as a support material.
    Cunha AF; Morales-Torres S; Pastrana-Martínez LM; Martins AA; Mata TM; Caetano NS; Loureiro JM
    RSC Adv; 2020 Jun; 10(36):21158-21173. PubMed ID: 35518751
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen-rich gas production via fast pyrolysis of biophysical dried sludge: Effect of particle size and moisture content on product yields and syngas composition.
    Han R; Liu J; Zhao C; Li Y; Chen A
    Waste Manag Res; 2016 Jun; 34(6):572-7. PubMed ID: 27118735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sustainable hydrogen-rich syngas from steam reforming of bio-based acetic acid over ZnO and CeO
    Luo S; Sun F; Fu P; Sun Q; Wang J
    RSC Adv; 2020 Oct; 10(62):38075-38084. PubMed ID: 35515189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of H
    Shi K; Yan J; Menéndez JA; Luo X; Yang G; Chen Y; Lester E; Wu T
    Front Chem; 2020; 8():3. PubMed ID: 32039161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Steam to Carbon Dioxide Ratio on the Performance of a Solid Oxide Cell for H
    Bimpiri N; Konstantinidou A; Tsiplakides D; Balomenou S; Papazisi KM
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Syngas Production From the Reforming of Typical Biogas Compositions in an Inert Porous Media Reactor.
    Guerrero F; Espinoza L; Ripoll N; Lisbona P; Arauzo I; Toledo M
    Front Chem; 2020; 8():145. PubMed ID: 32232024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Challenges in CO₂ Reforming with Methane for Production of Hydrogen Rich, Stable Syngas.
    Geetha Bhavani A; Vats T; Subba Reddy N
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3943-3950. PubMed ID: 31748101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-Nitrogen-Carbon Electrocatalysts for CO
    Delafontaine L; Asset T; Atanassov P
    ChemSusChem; 2020 Apr; 13(7):1688-1698. PubMed ID: 31961996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photocatalytic Production of Syngas from Biomass.
    Wang M; Zhou H; Wang F
    Acc Chem Res; 2023 May; 56(9):1057-1069. PubMed ID: 37043679
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Syngas biomethanation: effect of biomass-gas ratio, syngas composition and pH buffer.
    Li C; Zhu X; Angelidaki I
    Bioresour Technol; 2021 Dec; 342():125997. PubMed ID: 34583116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Steam reforming of crude glycerol with in situ CO(2) sorption.
    Dou B; Rickett GL; Dupont V; Williams PT; Chen H; Ding Y; Ghadiri M
    Bioresour Technol; 2010 Apr; 101(7):2436-42. PubMed ID: 19945865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon Capture Utilization and Storage in Methanol Production Using a Dry Reforming-Based Chemical Looping Technology.
    Ugwu A; Osman M; Zaabout A; Amini S
    Energy Fuels; 2022 Sep; 36(17):9719-9735. PubMed ID: 36091477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance Analysis of a Proton Exchange Membrane Fuel Cell Based Syngas.
    Zhang X; Lin Q; Liu H; Chen X; Su S; Ni M
    Entropy (Basel); 2019 Jan; 21(1):. PubMed ID: 33266801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.