These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 3027103)
1. A vesicular intermediate in the transport of hepatoma secretory proteins from the rough endoplasmic reticulum to the Golgi complex. Lodish HF; Kong N; Hirani S; Rasmussen J J Cell Biol; 1987 Feb; 104(2):221-30. PubMed ID: 3027103 [TBL] [Abstract][Full Text] [Related]
2. Glucose removal from N-linked oligosaccharides is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulum to the Golgi complex. Lodish HF; Kong N J Cell Biol; 1984 May; 98(5):1720-9. PubMed ID: 6233287 [TBL] [Abstract][Full Text] [Related]
3. Differential effects of 1-deoxynojirimycin on the intracellular transport of secretory glycoproteins of human hepatoma cells in culture. Parent JB; Yeo TK; Yeo KT; Olden K Mol Cell Biochem; 1986; 72(1-2):21-33. PubMed ID: 2434831 [TBL] [Abstract][Full Text] [Related]
4. Variability in transport rates of secretory glycoproteins through the endoplasmic reticulum and Golgi in human hepatoma cells. Yeo KT; Parent JB; Yeo TK; Olden K J Biol Chem; 1985 Jul; 260(13):7896-902. PubMed ID: 2989265 [TBL] [Abstract][Full Text] [Related]
5. The secretory pathway is normal in dithiothreitol-treated cells, but disulfide-bonded proteins are reduced and reversibly retained in the endoplasmic reticulum. Lodish HF; Kong N J Biol Chem; 1993 Sep; 268(27):20598-605. PubMed ID: 8397210 [TBL] [Abstract][Full Text] [Related]
6. Perturbation of cellular calcium blocks exit of secretory proteins from the rough endoplasmic reticulum. Lodish HF; Kong N J Biol Chem; 1990 Jul; 265(19):10893-9. PubMed ID: 2162823 [TBL] [Abstract][Full Text] [Related]
7. The pathways of endocytosed transferrin and secretory protein are connected in the trans-Golgi reticulum. Stoorvogel W; Geuze HJ; Griffith JM; Strous GJ J Cell Biol; 1988 Jun; 106(6):1821-9. PubMed ID: 3260238 [TBL] [Abstract][Full Text] [Related]
8. The effects of brefeldin-A on the high mannose oligosaccharides of mouse thyrotropin, free alpha-subunits, and total glycoproteins. Perkel VS; Liu AY; Miura Y; Magner JA Endocrinology; 1988 Jul; 123(1):310-8. PubMed ID: 3133195 [TBL] [Abstract][Full Text] [Related]
9. Processing to endoglycosidase H-resistant thyrotropin subunits occurs in the presence of brefeldin-A: evidence favoring the recycling of Golgi membranes to the rough endoplasmic reticulum in mouse thyrotrophs. Johnson MJ; Miura Y; Rubin D; Magner JA Thyroid; 1991; 1(2):185-94. PubMed ID: 1822366 [TBL] [Abstract][Full Text] [Related]
10. Accumulation of unglycosylated liver secretory glycoproteins in the rough endoplasmic reticulum. Yeo TK; Yeo KT; Olden K Biochem Biophys Res Commun; 1989 May; 160(3):1421-8. PubMed ID: 2471524 [TBL] [Abstract][Full Text] [Related]
11. Differential effects of brefeldin A on transport of secretory and lysosomal proteins. Strous GJ; van Kerkhof P; van Meer G; Rijnboutt S; Stoorvogel W J Biol Chem; 1993 Feb; 268(4):2341-7. PubMed ID: 8428908 [TBL] [Abstract][Full Text] [Related]
12. Role of endoplasmic reticular calcium in oligosaccharide processing of alpha 1-antitrypsin. Kuznetsov G; Brostrom MA; Brostrom CO J Biol Chem; 1993 Jan; 268(3):2001-8. PubMed ID: 8380585 [TBL] [Abstract][Full Text] [Related]
13. Involvement of the vacuolar H(+)-ATPases in the secretory pathway of HepG2 cells. Yilla M; Tan A; Ito K; Miwa K; Ploegh HL J Biol Chem; 1993 Sep; 268(25):19092-100. PubMed ID: 8395529 [TBL] [Abstract][Full Text] [Related]
14. Effect of lysosomotropic amines on the secretory pathway and on the recycling of the asialoglycoprotein receptor in human hepatoma cells. Strous GJ; Du Maine A; Zijderhand-Bleekemolen JE; Slot JW; Schwartz AL J Cell Biol; 1985 Aug; 101(2):531-9. PubMed ID: 2991301 [TBL] [Abstract][Full Text] [Related]
15. Biosynthesis of abnormally glycosylated alpha 1-antitrypsin by a human hepatoma cell line. Carlson J; Eriksson S; Alm R; Kjellström T Hepatology; 1984; 4(2):235-41. PubMed ID: 6323296 [TBL] [Abstract][Full Text] [Related]
16. Temperature-sensitive steps in the transport of secretory proteins through the Golgi complex in exocrine pancreatic cells. Saraste J; Palade GE; Farquhar MG Proc Natl Acad Sci U S A; 1986 Sep; 83(17):6425-9. PubMed ID: 3462704 [TBL] [Abstract][Full Text] [Related]
17. Soluble aggregates of the human PiZ alpha 1-antitrypsin variant are degraded within the endoplasmic reticulum by a mechanism sensitive to inhibitors of protein synthesis. Le A; Ferrell GA; Dishon DS; Le QQ; Sifers RN J Biol Chem; 1992 Jan; 267(2):1072-80. PubMed ID: 1530934 [TBL] [Abstract][Full Text] [Related]
18. Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates. Lodish HF; Kong N; Snider M; Strous GJ Nature; 1983 Jul 7-13; 304(5921):80-3. PubMed ID: 6866094 [TBL] [Abstract][Full Text] [Related]
19. A soluble secretory protein is first concentrated in the endoplasmic reticulum before transfer to the Golgi apparatus. Mizuno M; Singer SJ Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5732-6. PubMed ID: 8390678 [TBL] [Abstract][Full Text] [Related]
20. Nonselective utilization of the endomannosidase pathway for processing glycoproteins by human hepatoma (HepG2) cells. Rabouille C; Spiro RG J Biol Chem; 1992 Jun; 267(16):11573-8. PubMed ID: 1317871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]