BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 3027103)

  • 1. A vesicular intermediate in the transport of hepatoma secretory proteins from the rough endoplasmic reticulum to the Golgi complex.
    Lodish HF; Kong N; Hirani S; Rasmussen J
    J Cell Biol; 1987 Feb; 104(2):221-30. PubMed ID: 3027103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose removal from N-linked oligosaccharides is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulum to the Golgi complex.
    Lodish HF; Kong N
    J Cell Biol; 1984 May; 98(5):1720-9. PubMed ID: 6233287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of 1-deoxynojirimycin on the intracellular transport of secretory glycoproteins of human hepatoma cells in culture.
    Parent JB; Yeo TK; Yeo KT; Olden K
    Mol Cell Biochem; 1986; 72(1-2):21-33. PubMed ID: 2434831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variability in transport rates of secretory glycoproteins through the endoplasmic reticulum and Golgi in human hepatoma cells.
    Yeo KT; Parent JB; Yeo TK; Olden K
    J Biol Chem; 1985 Jul; 260(13):7896-902. PubMed ID: 2989265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The secretory pathway is normal in dithiothreitol-treated cells, but disulfide-bonded proteins are reduced and reversibly retained in the endoplasmic reticulum.
    Lodish HF; Kong N
    J Biol Chem; 1993 Sep; 268(27):20598-605. PubMed ID: 8397210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perturbation of cellular calcium blocks exit of secretory proteins from the rough endoplasmic reticulum.
    Lodish HF; Kong N
    J Biol Chem; 1990 Jul; 265(19):10893-9. PubMed ID: 2162823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pathways of endocytosed transferrin and secretory protein are connected in the trans-Golgi reticulum.
    Stoorvogel W; Geuze HJ; Griffith JM; Strous GJ
    J Cell Biol; 1988 Jun; 106(6):1821-9. PubMed ID: 3260238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of brefeldin-A on the high mannose oligosaccharides of mouse thyrotropin, free alpha-subunits, and total glycoproteins.
    Perkel VS; Liu AY; Miura Y; Magner JA
    Endocrinology; 1988 Jul; 123(1):310-8. PubMed ID: 3133195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing to endoglycosidase H-resistant thyrotropin subunits occurs in the presence of brefeldin-A: evidence favoring the recycling of Golgi membranes to the rough endoplasmic reticulum in mouse thyrotrophs.
    Johnson MJ; Miura Y; Rubin D; Magner JA
    Thyroid; 1991; 1(2):185-94. PubMed ID: 1822366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of unglycosylated liver secretory glycoproteins in the rough endoplasmic reticulum.
    Yeo TK; Yeo KT; Olden K
    Biochem Biophys Res Commun; 1989 May; 160(3):1421-8. PubMed ID: 2471524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of brefeldin A on transport of secretory and lysosomal proteins.
    Strous GJ; van Kerkhof P; van Meer G; Rijnboutt S; Stoorvogel W
    J Biol Chem; 1993 Feb; 268(4):2341-7. PubMed ID: 8428908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of endoplasmic reticular calcium in oligosaccharide processing of alpha 1-antitrypsin.
    Kuznetsov G; Brostrom MA; Brostrom CO
    J Biol Chem; 1993 Jan; 268(3):2001-8. PubMed ID: 8380585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of the vacuolar H(+)-ATPases in the secretory pathway of HepG2 cells.
    Yilla M; Tan A; Ito K; Miwa K; Ploegh HL
    J Biol Chem; 1993 Sep; 268(25):19092-100. PubMed ID: 8395529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of lysosomotropic amines on the secretory pathway and on the recycling of the asialoglycoprotein receptor in human hepatoma cells.
    Strous GJ; Du Maine A; Zijderhand-Bleekemolen JE; Slot JW; Schwartz AL
    J Cell Biol; 1985 Aug; 101(2):531-9. PubMed ID: 2991301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of abnormally glycosylated alpha 1-antitrypsin by a human hepatoma cell line.
    Carlson J; Eriksson S; Alm R; Kjellström T
    Hepatology; 1984; 4(2):235-41. PubMed ID: 6323296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-sensitive steps in the transport of secretory proteins through the Golgi complex in exocrine pancreatic cells.
    Saraste J; Palade GE; Farquhar MG
    Proc Natl Acad Sci U S A; 1986 Sep; 83(17):6425-9. PubMed ID: 3462704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soluble aggregates of the human PiZ alpha 1-antitrypsin variant are degraded within the endoplasmic reticulum by a mechanism sensitive to inhibitors of protein synthesis.
    Le A; Ferrell GA; Dishon DS; Le QQ; Sifers RN
    J Biol Chem; 1992 Jan; 267(2):1072-80. PubMed ID: 1530934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates.
    Lodish HF; Kong N; Snider M; Strous GJ
    Nature; 1983 Jul 7-13; 304(5921):80-3. PubMed ID: 6866094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A soluble secretory protein is first concentrated in the endoplasmic reticulum before transfer to the Golgi apparatus.
    Mizuno M; Singer SJ
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5732-6. PubMed ID: 8390678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonselective utilization of the endomannosidase pathway for processing glycoproteins by human hepatoma (HepG2) cells.
    Rabouille C; Spiro RG
    J Biol Chem; 1992 Jun; 267(16):11573-8. PubMed ID: 1317871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.