These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 30271139)

  • 1. 3D-printed scaffolds of mesoporous bioglass/gliadin/polycaprolactone ternary composite for enhancement of compressive strength, degradability, cell responses and new bone tissue ingrowth.
    Zhang Y; Yu W; Ba Z; Cui S; Wei J; Li H
    Int J Nanomedicine; 2018; 13():5433-5447. PubMed ID: 30271139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influences of mesoporous magnesium calcium silicate on mineralization, degradability, cell responses, curcumin release from macro-mesoporous scaffolds of gliadin based biocomposites.
    Wang S; Gu Z; Wang Z; Chen X; Cao L; Cai L; Li Q; Wei J; Shin JW; Su J
    Sci Rep; 2018 Jan; 8(1):174. PubMed ID: 29317753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and development of 3D printed shape memory triphasic polymer-ceramic bioactive scaffolds for bone tissue engineering.
    Ansari MAA; Makwana P; Dhimmar B; Vasita R; Jain PK; Nanda HS
    J Mater Chem B; 2024 Jul; 12(28):6886-6904. PubMed ID: 38912967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis.
    Ye Q; Zhang Y; Dai K; Chen X; Read HM; Zeng L; Hang F
    J Mater Sci Mater Med; 2020 Aug; 31(9):77. PubMed ID: 32816067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoporous diopside modulates biocompatibility, degradability and osteogenesis of bioactive scaffolds of gliadin-based composites for new bone formation.
    Ba Z; Chen Z; Huang Y; Feng D; Zhao Q; Zhu J; Wu D
    Int J Nanomedicine; 2018; 13():3883-3896. PubMed ID: 30013342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printed polycaprolactone/gelatin/ordered mesoporous calcium magnesium silicate nanocomposite scaffold for bone tissue regeneration.
    Mirzavandi Z; Poursamar SA; Amiri F; Bigham A; Rafienia M
    J Mater Sci Mater Med; 2024 Sep; 35(1):58. PubMed ID: 39348082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y
    Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Strontium Substitution on the Physicochemical Properties and Bone Regeneration Potential of 3D Printed Calcium Silicate Scaffolds.
    Chiu YC; Shie MY; Lin YH; Lee AK; Chen YW
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31163656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced biocompatibility and osteogenic potential of mesoporous magnesium silicate/polycaprolactone/wheat protein composite scaffolds.
    Kang YG; Wei J; Shin JW; Wu YR; Su J; Park YS; Shin JW
    Int J Nanomedicine; 2018; 13():1107-1117. PubMed ID: 29520139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatibility, degradability, bioactivity and osteogenesis of mesoporous/macroporous scaffolds of mesoporous diopside/poly(L-lactide) composite.
    Liu Z; Ji J; Tang S; Qian J; Yan Y; Yu B; Su J; Wei J
    J R Soc Interface; 2015 Oct; 12(111):20150507. PubMed ID: 26378120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradability, cytocompatibility, and osteogenesis of porous scaffolds of nanobredigite and PCL-PEG-PCL composite.
    Hou J; Fan D; Zhao L; Yu B; Su J; Wei J; Shin JW
    Int J Nanomedicine; 2016; 11():3545-55. PubMed ID: 27555774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D-Printed Bioactive Calcium Silicate/Poly-ε-Caprolactone Bioscaffolds Modified with Biomimetic Extracellular Matrices for Bone Regeneration.
    Wu YA; Chiu YC; Lin YH; Ho CC; Shie MY; Chen YW
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30795573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three dimensionally printed pearl powder/poly-caprolactone composite scaffolds for bone regeneration.
    Zhang X; Du X; Li D; Ao R; Yu B; Yu B
    J Biomater Sci Polym Ed; 2018 Oct; 29(14):1686-1700. PubMed ID: 29768120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds.
    Poh PSP; Hutmacher DW; Holzapfel BM; Solanki AK; Stevens MM; Woodruff MA
    Acta Biomater; 2016 Jan; 30():319-333. PubMed ID: 26563472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of strontium-containing on the properties of Mg-doped wollastonite bioceramic scaffolds.
    Wang S; Liu L; Zhou X; Yang D; Shi Z; Hao Y
    Biomed Eng Online; 2019 Dec; 18(1):119. PubMed ID: 31829229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen, polycaprolactone and attapulgite composite scaffolds for in vivo bone repair in rabbit models.
    Zhao H; Zhang X; Zhou D; Weng Y; Qin W; Pan F; Lv S; Zhao X
    Biomed Mater; 2020 Jul; 15(4):045022. PubMed ID: 32224507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite clinoptilolite/PCL-PEG-PCL scaffolds for bone regeneration: In vitro and in vivo evaluation.
    Pazarçeviren AE; Dikmen T; Altunbaş K; Yaprakçı V; Erdemli Ö; Keskin D; Tezcaner A
    J Tissue Eng Regen Med; 2020 Jan; 14(1):3-15. PubMed ID: 31475790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration.
    Wang Z; Hui A; Zhao H; Ye X; Zhang C; Wang A; Zhang C
    Int J Nanomedicine; 2020; 15():6945-6960. PubMed ID: 33061361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells.
    Lin YH; Chuang TY; Chiang WH; Chen IP; Wang K; Shie MY; Chen YW
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109887. PubMed ID: 31500024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.