These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 30271327)

  • 21. Molecular blueprints for spinal circuit modules controlling locomotor speed in zebrafish.
    Pallucchi I; Bertuzzi M; Madrid D; Fontanel P; Higashijima SI; El Manira A
    Nat Neurosci; 2024 Jan; 27(1):78-89. PubMed ID: 37919423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Origin of excitation underlying locomotion in the spinal circuit of zebrafish.
    Eklöf-Ljunggren E; Haupt S; Ausborn J; Dehnisch I; Uhlén P; Higashijima S; El Manira A
    Proc Natl Acad Sci U S A; 2012 Apr; 109(14):5511-6. PubMed ID: 22431619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reconfiguration of the spinal interneuronal network during locomotion in vertebrates.
    Frigon A
    J Neurophysiol; 2009 May; 101(5):2201-3. PubMed ID: 19279156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spinal cholinergic interneurons differentially control motoneuron excitability and alter the locomotor network operational range.
    Bertuzzi M; Ampatzis K
    Sci Rep; 2018 Jan; 8(1):1988. PubMed ID: 29386582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transformation of an early-established motor circuit during maturation in zebrafish.
    Pallucchi I; Bertuzzi M; Michel JC; Miller AC; El Manira A
    Cell Rep; 2022 Apr; 39(2):110654. PubMed ID: 35417694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Delineating the Diversity of Spinal Interneurons in Locomotor Circuits.
    Gosgnach S; Bikoff JB; Dougherty KJ; El Manira A; Lanuza GM; Zhang Y
    J Neurosci; 2017 Nov; 37(45):10835-10841. PubMed ID: 29118212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optogenetic activation of excitatory premotor interneurons is sufficient to generate coordinated locomotor activity in larval zebrafish.
    Ljunggren EE; Haupt S; Ausborn J; Ampatzis K; El Manira A
    J Neurosci; 2014 Jan; 34(1):134-9. PubMed ID: 24381274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The spinal motor system in early vertebrates and some of its evolutionary changes.
    Fetcho JR
    Brain Behav Evol; 1992; 40(2-3):82-97. PubMed ID: 1422809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Active mechanosensory feedback during locomotion in the zebrafish spinal cord.
    Knafo S; Wyart C
    Curr Opin Neurobiol; 2018 Oct; 52():48-53. PubMed ID: 29704750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new model of the spinal locomotor networks of a salamander and its properties.
    Liu Q; Yang H; Zhang J; Wang J
    Biol Cybern; 2018 Aug; 112(4):369-385. PubMed ID: 29790009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Grading movement strength by changes in firing intensity versus recruitment of spinal interneurons.
    Bhatt DH; McLean DL; Hale ME; Fetcho JR
    Neuron; 2007 Jan; 53(1):91-102. PubMed ID: 17196533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic shifts in the balance of excitation and inhibition coordinate the activity of axial motor pools at different speeds of locomotion.
    Kishore S; Bagnall MW; McLean DL
    J Neurosci; 2014 Oct; 34(42):14046-54. PubMed ID: 25319701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous shifts in the active set of spinal interneurons during changes in locomotor speed.
    McLean DL; Masino MA; Koh IY; Lindquist WB; Fetcho JR
    Nat Neurosci; 2008 Dec; 11(12):1419-29. PubMed ID: 18997790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Volume EM Reconstruction of Spinal Cord Reveals Wiring Specificity in Speed-Related Motor Circuits.
    Svara FN; Kornfeld J; Denk W; Bollmann JH
    Cell Rep; 2018 Jun; 23(10):2942-2954. PubMed ID: 29874581
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics and plasticity of spinal locomotor circuits.
    El Manira A
    Curr Opin Neurobiol; 2014 Dec; 29():133-41. PubMed ID: 25062504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional organization of V2a-related locomotor circuits in the rodent spinal cord.
    Dougherty KJ; Kiehn O
    Ann N Y Acad Sci; 2010 Jun; 1198():85-93. PubMed ID: 20536923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modular organization of axial microcircuits in zebrafish.
    Bagnall MW; McLean DL
    Science; 2014 Jan; 343(6167):197-200. PubMed ID: 24408436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Central pattern generation of locomotion: a review of the evidence.
    MacKay-Lyons M
    Phys Ther; 2002 Jan; 82(1):69-83. PubMed ID: 11784280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The intrinsic operation of the networks that make us locomote.
    Grillner S; El Manira A
    Curr Opin Neurobiol; 2015 Apr; 31():244-9. PubMed ID: 25599926
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intraspinal Sensory Neurons Provide Powerful Inhibition to Motor Circuits Ensuring Postural Control during Locomotion.
    Hubbard JM; Böhm UL; Prendergast A; Tseng PB; Newman M; Stokes C; Wyart C
    Curr Biol; 2016 Nov; 26(21):2841-2853. PubMed ID: 27720623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.