These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Mouse model of inducible nephrogenic diabetes insipidus produced by floxed aquaporin-2 gene deletion. Yang B; Zhao D; Qian L; Verkman AS Am J Physiol Renal Physiol; 2006 Aug; 291(2):F465-72. PubMed ID: 16434568 [TBL] [Abstract][Full Text] [Related]
5. Lithium-induced NDI: acetazolamide reduces polyuria but does not improve urine concentrating ability. de Groot T; Doornebal J; Christensen BM; Cockx S; Sinke AP; Baumgarten R; Bedford JJ; Walker RJ; Wetzels JFM; Deen PMT Am J Physiol Renal Physiol; 2017 Sep; 313(3):F669-F676. PubMed ID: 28615247 [TBL] [Abstract][Full Text] [Related]
6. The renal concentrating mechanism and the clinical consequences of its loss. Agaba EI; Rohrscheib M; Tzamaloukas AH Niger Med J; 2012 Jul; 53(3):109-15. PubMed ID: 23293407 [TBL] [Abstract][Full Text] [Related]
7. Nephrogenic diabetes insipidus in mice caused by deleting COOH-terminal tail of aquaporin-2. Shi PP; Cao XR; Qu J; Volk KA; Kirby P; Williamson RA; Stokes JB; Yang B Am J Physiol Renal Physiol; 2007 May; 292(5):F1334-44. PubMed ID: 17229678 [TBL] [Abstract][Full Text] [Related]
8. Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats. Christensen S; Kusano E; Yusufi AN; Murayama N; Dousa TP J Clin Invest; 1985 Jun; 75(6):1869-79. PubMed ID: 2989335 [TBL] [Abstract][Full Text] [Related]
9. Integrin-linked kinase regulates tubular aquaporin-2 content and intracellular location: a link between the extracellular matrix and water reabsorption. Cano-Peñalver JL; Griera M; Serrano I; Rodríguez-Puyol D; Dedhar S; de Frutos S; Rodríguez-Puyol M FASEB J; 2014 Aug; 28(8):3645-59. PubMed ID: 24784577 [TBL] [Abstract][Full Text] [Related]
10. Compulsive polydipsia with defective renal concentrating capacity. CHAPDELAINE A; LANTHIER A Can Med Assoc J; 1963 Jun; 88(24):1184-92. PubMed ID: 14020123 [TBL] [Abstract][Full Text] [Related]
11. Impaired urinary concentration after vasopressin and its gradual correction in hypothalamic diabetes insipidus. Harrington AR; Valtin H J Clin Invest; 1968 Mar; 47(3):502-10. PubMed ID: 5637139 [TBL] [Abstract][Full Text] [Related]
14. Vasopressin-resistant nephrogenic diabetes insipidus. A result of amphotericin B therapy. Barbour GL; Straub KD; O'Neal BL; Leatherman JW Arch Intern Med; 1979 Jan; 139(1):86-8. PubMed ID: 760689 [TBL] [Abstract][Full Text] [Related]
15. Urinary excretion of aquaporin-2 water channel differentiates psychogenic polydipsia from central diabetes insipidus. Saito T; Ishikawa S; Ito T; Oda H; Ando F; Higashiyama M; Nagasaka S; Hieda M; Saito T J Clin Endocrinol Metab; 1999 Jun; 84(6):2235-7. PubMed ID: 10372737 [TBL] [Abstract][Full Text] [Related]
16. Water transport in the kidney and nephrogenic diabetes insipidus. Cohen M; Post GS J Vet Intern Med; 2002; 16(5):510-7. PubMed ID: 12322698 [TBL] [Abstract][Full Text] [Related]
18. P2Y12 Receptor Localizes in the Renal Collecting Duct and Its Blockade Augments Arginine Vasopressin Action and Alleviates Nephrogenic Diabetes Insipidus. Zhang Y; Peti-Peterdi J; Müller CE; Carlson NG; Baqi Y; Strasburg DL; Heiney KM; Villanueva K; Kohan DE; Kishore BK J Am Soc Nephrol; 2015 Dec; 26(12):2978-87. PubMed ID: 25855780 [TBL] [Abstract][Full Text] [Related]
19. A case of primary aldosteronism combined with acquired nephrogenic diabetes insipidus. Kim K; Lee JH; Kim SC; Cha DR; Kang YS Kidney Res Clin Pract; 2014 Dec; 33(4):229-33. PubMed ID: 26885483 [TBL] [Abstract][Full Text] [Related]
20. COX-2 disruption leads to increased central vasopressin stores and impaired urine concentrating ability in mice. Nørregaard R; Madsen K; Hansen PB; Bie P; Thavalingam S; Frøkiær J; Jensen BL Am J Physiol Renal Physiol; 2011 Dec; 301(6):F1303-13. PubMed ID: 21880835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]