BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30271722)

  • 1. Standard method for microCT-based additive manufacturing quality control 1: Porosity analysis.
    du Plessis A; Sperling P; Beerlink A; Tshabalala L; Hoosain S; Mathe N; le Roux SG
    MethodsX; 2018; 5():1102-1110. PubMed ID: 30271722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standard method for microCT-based additive manufacturing quality control 2: Density measurement.
    du Plessis A; Sperling P; Beerlink A; Tshabalala L; Hoosain S; Mathe N; le Roux SG
    MethodsX; 2018; 5():1117-1123. PubMed ID: 30294559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Standard method for microCT-based additive manufacturing quality control 3: Surface roughness.
    Plessis AD; Sperling P; Beerlink A; Kruger O; Tshabalala L; Hoosain S; le Roux SG
    MethodsX; 2018; 5():1111-1116. PubMed ID: 30294558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standard method for microCT-based additive manufacturing quality control 4: Metal powder analysis.
    du Plessis A; Sperling P; Beerlink A; du Preez WB; le Roux SG
    MethodsX; 2018; 5():1336-1345. PubMed ID: 30406023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray tomography for the advancement of laser powder bed fusion additive manufacturing.
    DU Plessis A
    J Microsc; 2022 Mar; 285(3):121-130. PubMed ID: 32496595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ porosity recognition for laser additive manufacturing of 7075-Al alloy using plasma emission spectroscopy.
    Ren W; Mazumder J
    Sci Rep; 2020 Nov; 10(1):19493. PubMed ID: 33173068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary Methods for the Assessment of the Porosity of Laser Additive-Manufactured Titanium Alloy.
    Petrișor SM; Savin A; Stanciu MD; Prevorovsky Z; Soare M; Nový F; Steigmann R
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of pore structure in cobalt chrome additively manufactured parts using X-ray computed tomography and three-dimensional image analysis.
    Kim FH; Moylan SP; Garboczi EJ; Slotwinski JA
    Addit Manuf; 2017; 17():. PubMed ID: 32166065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.
    Slotwinski JA; Garboczi EJ; Hebenstreit KM
    J Res Natl Inst Stand Technol; 2014; 119():494-528. PubMed ID: 26601041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel approach for quantification of porosity for biomaterial implants using microcomputed tomography (microCT).
    Hiu-Yan Y; Ling Q; Kwong-Man L; Ming Z; Kwok-Sui L; Chun-yiu CJ
    J Biomed Mater Res B Appl Biomater; 2005 Nov; 75(2):234-42. PubMed ID: 16108058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of manufacturing parameters of additively manufactured 316L steel samples using ultrasound fingerprinting.
    Zia S; Carlson JE; Åkerfeldt P
    Ultrasonics; 2024 Feb; 137():107196. PubMed ID: 37925963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Looking deep into nature: A review of micro-computed tomography in biomimicry.
    du Plessis A; Broeckhoven C
    Acta Biomater; 2019 Feb; 85():27-40. PubMed ID: 30543937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended CT Void Analysis in FDM Additive Manufacturing Components.
    Hernandez-Contreras A; Ruiz-Huerta L; Caballero-Ruiz A; Moock V; Siller HR
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-destructive wood identification using X-ray µCT scanning: which resolution do we need?
    Dierickx S; Genbrugge S; Beeckman H; Hubau W; Kibleur P; Van den Bulcke J
    Plant Methods; 2024 Jun; 20(1):98. PubMed ID: 38915095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Void Content Determination of Carbon Fiber Reinforced Polymers: A Comparison between Destructive and Non-Destructive Methods.
    Elkolali M; Nogueira LP; Rønning PO; Alcocer A
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructural Characterization of Additively Manufactured Metal Components Using Linear and Nonlinear Ultrasonic Techniques.
    Park SH; Choi S; Song DG; Jhang KY
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic dual-energy CT (microDECT): a flexible tool for multichannel ex vivo 3D imaging of biological specimens.
    Handschuh S; Beisser CJ; Ruthensteiner B; Metscher BD
    J Microsc; 2017 Jul; 267(1):3-26. PubMed ID: 28267884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray Tomographic Method to Study the Internal Structure of a TiNi-TiB
    Korobenkov M; Lebedev M; Promakhov V; Narikovich A
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36836981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Metal Powders Used for Additive Manufacturing.
    Slotwinski JA; Garboczi EJ; Stutzman PE; Ferraris CF; Watson SS; Peltz MA
    J Res Natl Inst Stand Technol; 2014; 119():460-93. PubMed ID: 26601040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the microstructure of plant leaves in 3D with lab-based X-ray computed tomography.
    Mathers AW; Hepworth C; Baillie AL; Sloan J; Jones H; Lundgren M; Fleming AJ; Mooney SJ; Sturrock CJ
    Plant Methods; 2018; 14():99. PubMed ID: 30455724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.