These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30272125)

  • 21. Investigating the neural basis of basic human movement perception using multi-voxel pattern analysis.
    Ma F; Xu J; Li X; Wang P; Wang B; Liu B
    Exp Brain Res; 2018 Mar; 236(3):907-918. PubMed ID: 29362830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brain areas involved in perception of biological motion.
    Grossman E; Donnelly M; Price R; Pickens D; Morgan V; Neighbor G; Blake R
    J Cogn Neurosci; 2000 Sep; 12(5):711-20. PubMed ID: 11054914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Action Observation Network Activity Related to Object-Directed and Socially-Directed Actions in Adolescents.
    Lesourd M; Afyouni A; Geringswald F; Cignetti F; Raoul L; Sein J; Nazarian B; Anton JL; Grosbras MH
    J Neurosci; 2023 Jan; 43(1):125-141. PubMed ID: 36347621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lateral occipitotemporal cortex (LOTC) activity is greatest while viewing dance compared to visualization and movement: learning and expertise effects.
    Di Nota PM; Levkov G; Bar R; DeSouza JFX
    Exp Brain Res; 2016 Jul; 234(7):2007-2023. PubMed ID: 26960739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parietal-Occipital Interactions Underlying Control- and Representation-Related Processes in Working Memory for Nonspatial Visual Features.
    Gosseries O; Yu Q; LaRocque JJ; Starrett MJ; Rose NS; Cowan N; Postle BR
    J Neurosci; 2018 May; 38(18):4357-4366. PubMed ID: 29636395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visual gravity cues in the interpretation of biological movements: neural correlates in humans.
    Maffei V; Indovina I; Macaluso E; Ivanenko YP; A Orban G; Lacquaniti F
    Neuroimage; 2015 Jan; 104():221-30. PubMed ID: 25315789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specific involvement of human parietal systems and the amygdala in the perception of biological motion.
    Bonda E; Petrides M; Ostry D; Evans A
    J Neurosci; 1996 Jun; 16(11):3737-44. PubMed ID: 8642416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal Evolution of Target Representation, Movement Direction Planning, and Reach Execution in Occipital-Parietal-Frontal Cortex: An fMRI Study.
    Cappadocia DC; Monaco S; Chen Y; Blohm G; Crawford JD
    Cereb Cortex; 2017 Nov; 27(11):5242-5260. PubMed ID: 27744289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex.
    Saygin AP; Sereno MI
    Cereb Cortex; 2008 Sep; 18(9):2158-68. PubMed ID: 18234687
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dorsal stream development in motion and structure-from-motion perception.
    Klaver P; Lichtensteiger J; Bucher K; Dietrich T; Loenneker T; Martin E
    Neuroimage; 2008 Feb; 39(4):1815-23. PubMed ID: 18096410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distinct roles of temporal and frontoparietal cortex in representing actions across vision and language.
    Wurm MF; Caramazza A
    Nat Commun; 2019 Jan; 10(1):289. PubMed ID: 30655531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The connectivity signature of co-speech gesture integration: The superior temporal sulcus modulates connectivity between areas related to visual gesture and auditory speech processing.
    Straube B; Wroblewski A; Jansen A; He Y
    Neuroimage; 2018 Nov; 181():539-549. PubMed ID: 30025854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deciphering human motion to discriminate social interactions: a developmental neuroimaging study.
    Sapey-Triomphe LA; Centelles L; Roth M; Fonlupt P; Hénaff MA; Schmitz C; Assaiante C
    Soc Cogn Affect Neurosci; 2017 Feb; 12(2):340-351. PubMed ID: 28008075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A model of biological motion perception from configural form cues.
    Lange J; Lappe M
    J Neurosci; 2006 Mar; 26(11):2894-906. PubMed ID: 16540566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetoencephalographic study of occipitotemporal activity elicited by viewing mouth movements.
    Miki K; Watanabe S; Kakigi R; Puce A
    Clin Neurophysiol; 2004 Jul; 115(7):1559-74. PubMed ID: 15203057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stereomotion processing in the human occipital cortex.
    Likova LT; Tyler CW
    Neuroimage; 2007 Nov; 38(2):293-305. PubMed ID: 17869540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of parietal cortex during sustained visual spatial attention.
    Thakral PP; Slotnick SD
    Brain Res; 2009 Dec; 1302():157-66. PubMed ID: 19765554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Path integration in 3D from visual motion cues: A human fMRI study.
    Indovina I; Maffei V; Mazzarella E; Sulpizio V; Galati G; Lacquaniti F
    Neuroimage; 2016 Nov; 142():512-521. PubMed ID: 27395391
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Generic Mechanism for Perceptual Organization in the Parietal Cortex.
    Grassi PR; Zaretskaya N; Bartels A
    J Neurosci; 2018 Aug; 38(32):7158-7169. PubMed ID: 30006362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic modulation of the action observation network by movement familiarity.
    Gardner T; Goulden N; Cross ES
    J Neurosci; 2015 Jan; 35(4):1561-72. PubMed ID: 25632133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.