These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 30272184)
1. Data and systems for medication-related text classification and concept normalization from Twitter: insights from the Social Media Mining for Health (SMM4H)-2017 shared task. Sarker A; Belousov M; Friedrichs J; Hakala K; Kiritchenko S; Mehryary F; Han S; Tran T; Rios A; Kavuluru R; de Bruijn B; Ginter F; Mahata D; Mohammad SM; Nenadic G; Gonzalez-Hernandez G J Am Med Inform Assoc; 2018 Oct; 25(10):1274-1283. PubMed ID: 30272184 [TBL] [Abstract][Full Text] [Related]
2. SOCIAL MEDIA MINING SHARED TASK WORKSHOP. Sarker A; Nikfarjam A; Gonzalez G Pac Symp Biocomput; 2016; 21():581-92. PubMed ID: 26776221 [TBL] [Abstract][Full Text] [Related]
3. Multimodal model with text and drug embeddings for adverse drug reaction classification. Sakhovskiy A; Tutubalina E J Biomed Inform; 2022 Nov; 135():104182. PubMed ID: 36184069 [TBL] [Abstract][Full Text] [Related]
4. Overview of the 8th Social Media Mining for Health Applications (#SMM4H) shared tasks at the AMIA 2023 Annual Symposium. Klein AZ; Banda JM; Guo Y; Schmidt AL; Xu D; Flores Amaro I; Rodriguez-Esteban R; Sarker A; Gonzalez-Hernandez G J Am Med Inform Assoc; 2024 Apr; 31(4):991-996. PubMed ID: 38218723 [TBL] [Abstract][Full Text] [Related]
5. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. Sarker A; Gonzalez G J Biomed Inform; 2015 Feb; 53():196-207. PubMed ID: 25451103 [TBL] [Abstract][Full Text] [Related]
6. Social media mining for birth defects research: A rule-based, bootstrapping approach to collecting data for rare health-related events on Twitter. Klein AZ; Sarker A; Cai H; Weissenbacher D; Gonzalez-Hernandez G J Biomed Inform; 2018 Nov; 87():68-78. PubMed ID: 30292855 [TBL] [Abstract][Full Text] [Related]
7. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts. Cocos A; Fiks AG; Masino AJ J Am Med Inform Assoc; 2017 Jul; 24(4):813-821. PubMed ID: 28339747 [TBL] [Abstract][Full Text] [Related]
8. Classifying adverse drug reactions from imbalanced twitter data. Dai HJ; Wang CK Int J Med Inform; 2019 Sep; 129():122-132. PubMed ID: 31445246 [TBL] [Abstract][Full Text] [Related]
9. Complementing the US Food and Drug Administration Adverse Event Reporting System With Adverse Drug Reaction Reporting From Social Media: Comparative Analysis. Zhou Z; Hultgren KE JMIR Public Health Surveill; 2020 Sep; 6(3):e19266. PubMed ID: 32996889 [TBL] [Abstract][Full Text] [Related]
10. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. Nikfarjam A; Sarker A; O'Connor K; Ginn R; Gonzalez G J Am Med Inform Assoc; 2015 May; 22(3):671-81. PubMed ID: 25755127 [TBL] [Abstract][Full Text] [Related]
11. DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter. Magge A; Tutubalina E; Miftahutdinov Z; Alimova I; Dirkson A; Verberne S; Weissenbacher D; Gonzalez-Hernandez G J Am Med Inform Assoc; 2021 Sep; 28(10):2184-2192. PubMed ID: 34270701 [TBL] [Abstract][Full Text] [Related]
12. Data and models for stance and premise detection in COVID-19 tweets: Insights from the Social Media Mining for Health (SMM4H) 2022 shared task. Davydova V; Yang H; Tutubalina E J Biomed Inform; 2024 Jan; 149():104555. PubMed ID: 38008241 [TBL] [Abstract][Full Text] [Related]
13. Pharmacovigilance with Transformers: A Framework to Detect Adverse Drug Reactions Using BERT Fine-Tuned with FARM. Hussain S; Afzal H; Saeed R; Iltaf N; Umair MY Comput Math Methods Med; 2021; 2021():5589829. PubMed ID: 34422092 [TBL] [Abstract][Full Text] [Related]
14. Filtering big data from social media--Building an early warning system for adverse drug reactions. Yang M; Kiang M; Shang W J Biomed Inform; 2015 Apr; 54():230-40. PubMed ID: 25688695 [TBL] [Abstract][Full Text] [Related]
15. Tweet Classification Toward Twitter-Based Disease Surveillance: New Data, Methods, and Evaluations. Wakamiya S; Morita M; Kano Y; Ohkuma T; Aramaki E J Med Internet Res; 2019 Feb; 21(2):e12783. PubMed ID: 30785407 [TBL] [Abstract][Full Text] [Related]
16. Hybrid Semantic Analysis for Mapping Adverse Drug Reaction Mentions in Tweets to Medical Terminology. Emadzadeh E; Sarker A; Nikfarjam A; Gonzalez G AMIA Annu Symp Proc; 2017; 2017():679-688. PubMed ID: 29854133 [TBL] [Abstract][Full Text] [Related]
17. Deep neural networks ensemble for detecting medication mentions in tweets. Weissenbacher D; Sarker A; Klein A; O'Connor K; Magge A; Gonzalez-Hernandez G J Am Med Inform Assoc; 2019 Dec; 26(12):1618-1626. PubMed ID: 31562510 [TBL] [Abstract][Full Text] [Related]
18. Leveraging graph topology and semantic context for pharmacovigilance through twitter-streams. Eshleman R; Singh R BMC Bioinformatics; 2016 Oct; 17(Suppl 13):335. PubMed ID: 27766937 [TBL] [Abstract][Full Text] [Related]
19. Promoting Reproducible Research for Characterizing Nonmedical Use of Medications Through Data Annotation: Description of a Twitter Corpus and Guidelines. O'Connor K; Sarker A; Perrone J; Gonzalez Hernandez G J Med Internet Res; 2020 Feb; 22(2):e15861. PubMed ID: 32130117 [TBL] [Abstract][Full Text] [Related]
20. Exploring Spanish health social media for detecting drug effects. Segura-Bedmar I; Martínez P; Revert R; Moreno-Schneider J BMC Med Inform Decis Mak; 2015; 15 Suppl 2(Suppl 2):S6. PubMed ID: 26100267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]