These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30272255)

  • 1. miR-1307-3p suppresses the chondrogenic differentiation of human adipose-derived stem cells by targeting BMPR2.
    Yang Z; Li R; Ao J; Wa QD; Zhang Y; Chen L; Wen J; Chen B; Pan W; Li B; Tian XB
    Int J Mol Med; 2018 Dec; 42(6):3115-3124. PubMed ID: 30272255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA expression profiles in human adipose-derived stem cells during chondrogenic differentiation.
    Yang Z; Hao J; Hu ZM
    Int J Mol Med; 2015 Mar; 35(3):579-86. PubMed ID: 25543998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-99a regulates early chondrogenic differentiation of rat mesenchymal stem cells by targeting the BMPR2 gene.
    Zhou X; Wang J; Sun H; Qi Y; Xu W; Luo D; Jin X; Li C; Chen W; Lin Z; Li F; Zhang R; Li G
    Cell Tissue Res; 2016 Oct; 366(1):143-53. PubMed ID: 27177866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MiR-143-3p regulates chondrogenic differentiation of synovium derived mesenchymal stem cells under mechanical stress through the BMPR2-Smad signalling pathway by targeting BMPR2.
    Yan X; Zhang Q; Zhang M; He Z; Liu R; Liu J; Ren D; Zeng X; Lv T; Yuan X
    J Oral Rehabil; 2024 Aug; 51(8):1507-1520. PubMed ID: 38717032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [CHONDROGENESIS-SPECIFIC MICRORNA EXPRESSION PATTERN ANALYSIS IN CHONDROGENIC DIFFERENTIATION OF HUMAN ADIPOSE-DERIVED STEM CELLS].
    Zhang Z; Kang Y; Zhang Z; Yang Z; Fang S; Sheng P; He A; Fu M; Liao W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Jan; 29(1):74-80. PubMed ID: 26455177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of microRNAs during chondrogenesis of human adipose-derived stem cells.
    Zhang Z; Kang Y; Zhang Z; Zhang H; Duan X; Liu J; Li X; Liao W
    Osteoarthritis Cartilage; 2012 Dec; 20(12):1638-46. PubMed ID: 22947280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MiR-143-3p regulates early cartilage differentiation of BMSCs and promotes cartilage damage repair through targeting BMPR2.
    Tian J; Rui YJ; Xu YJ; Zhang SA
    Eur Rev Med Pharmacol Sci; 2018 Dec; 22(24):8814-8821. PubMed ID: 30575923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR-23a-3p regulated by LncRNA SNHG5 suppresses the chondrogenic differentiation of human adipose-derived stem cells via targeting SOX6/SOX5.
    Yang Z; Ren Z; She R; Ao J; Wa Q; Sun Z; Li B; Tian X
    Cell Tissue Res; 2021 Feb; 383(2):723-733. PubMed ID: 32960357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LncRNA NONHSAT030515 promotes the chondrogenic differentiation of human adipose-derived stem cells via regulating the miR-490-5p/BMPR2 axis.
    Yang Q; Guo J; Ren Z; Li B; Huang H; Yang Z
    J Orthop Surg Res; 2021 Nov; 16(1):658. PubMed ID: 34742321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Downregulation of long noncoding RNA HOTAIRM1 variant 1 contributes to osteoarthritis via regulating miR-125b/BMPR2 axis and activating JNK/MAPK/ERK pathway.
    Xiao Y; Yan X; Yang Y; Ma X
    Biomed Pharmacother; 2019 Jan; 109():1569-1577. PubMed ID: 30551410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyaluronan size alters chondrogenesis of adipose-derived stem cells via the CD44/ERK/SOX-9 pathway.
    Wu SC; Chen CH; Wang JY; Lin YS; Chang JK; Ho ML
    Acta Biomater; 2018 Jan; 66():224-237. PubMed ID: 29128538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyaluronan initiates chondrogenesis mainly via CD44 in human adipose-derived stem cells.
    Wu SC; Chen CH; Chang JK; Fu YC; Wang CK; Eswaramoorthy R; Lin YS; Wang YH; Lin SY; Wang GJ; Ho ML
    J Appl Physiol (1985); 2013 Jun; 114(11):1610-8. PubMed ID: 23449937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of exosomal long non-coding RNAs in chondrogenic differentiation of human adipose-derived stem cells.
    Zhang Z; Huang G; Mao G; Hu S
    Mol Cell Biochem; 2021 Mar; 476(3):1411-1420. PubMed ID: 33389494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MiR-132-3p regulates ADAMTS-5 expression and promotes chondrogenic differentiation of rat mesenchymal stem cells.
    Zhou X; Luo D; Sun H; Qi Y; Xu W; Jin X; Li C; Lin Z; Li G
    J Cell Biochem; 2018 Mar; 119(3):2579-2587. PubMed ID: 28980719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-153 suppresses the osteogenic differentiation of human mesenchymal stem cells by targeting bone morphogenetic protein receptor type II.
    Cao Y; LV Q; LV C
    Int J Mol Med; 2015 Sep; 36(3):760-6. PubMed ID: 26151470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment.
    Wu SC; Chang JK; Wang CK; Wang GJ; Ho ML
    Biomaterials; 2010 Feb; 31(4):631-40. PubMed ID: 19819543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centrifugal gravity-induced BMP4 induces chondrogenic differentiation of adipose-derived stem cells via SOX9 upregulation.
    Jang Y; Jung H; Nam Y; Rim YA; Kim J; Jeong SH; Ju JH
    Stem Cell Res Ther; 2016 Dec; 7(1):184. PubMed ID: 27931264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of MiR-375-BMPR2 as a Key Factor Downstream of BMP15/GDF9 on the Smad1/5/8 and Smad2/3 Signaling Pathways.
    Liu C; Yuan B; Chen H; Xu M; Sun X; Xu J; Gao Y; Chen C; Jiang H; Zhang J
    Cell Physiol Biochem; 2018; 46(1):213-225. PubMed ID: 29587293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MiR-193b regulates early chondrogenesis by inhibiting the TGF-beta2 signaling pathway.
    Hou C; Yang Z; Kang Y; Zhang Z; Fu M; He A; Zhang Z; Liao W
    FEBS Lett; 2015 Apr; 589(9):1040-7. PubMed ID: 25728278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ITGB1 promotes the chondrogenic differentiation of human adipose-derived mesenchymal stem cells by activating the ERK signaling.
    Luo S; Shi Q; Li W; Wu W; Zha Z
    J Mol Histol; 2020 Dec; 51(6):729-739. PubMed ID: 33057850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.