These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 30272280)
21. Mining the potential therapeutic targets for coronary artery disease by bioinformatics analysis. Wang W; Xu Z; Zhu X; Chang X Mol Med Rep; 2018 Dec; 18(6):5069-5075. PubMed ID: 30320387 [TBL] [Abstract][Full Text] [Related]
22. Identification of molecular targets for esophageal carcinoma diagnosis using miRNA-seq and RNA-seq data from The Cancer Genome Atlas: a study of 187 cases. Zeng JH; Xiong DD; Pang YY; Zhang Y; Tang RX; Luo DZ; Chen G Oncotarget; 2017 May; 8(22):35681-35699. PubMed ID: 28415685 [TBL] [Abstract][Full Text] [Related]
23. The identification of a common different gene expression signature in patients with colorectal cancer. Zhao ZW; Fan XX; Yang LL; Song JJ; Fang SJ; Tu JF; Chen MJ; Zheng LY; Wu FZ; Zhang DK; Ying XH; Ji JS Math Biosci Eng; 2019 Apr; 16(4):2942-2958. PubMed ID: 31137244 [TBL] [Abstract][Full Text] [Related]
24. Construction and prognostic analysis of miRNA-mRNA regulatory network in liver metastasis from colorectal cancer. Cai R; Lu Q; Wang D World J Surg Oncol; 2021 Jan; 19(1):7. PubMed ID: 33397428 [TBL] [Abstract][Full Text] [Related]
25. Construction and analysis of mRNA, miRNA, lncRNA, and TF regulatory networks reveal the key genes associated with prostate cancer. Ye Y; Li SL; Wang SY PLoS One; 2018; 13(8):e0198055. PubMed ID: 30138363 [TBL] [Abstract][Full Text] [Related]
26. Delineating the underlying molecular mechanisms and key genes involved in metastasis of colorectal cancer via bioinformatics analysis. Qi C; Chen Y; Zhou Y; Huang X; Li G; Zeng J; Ruan Z; Xie X; Zhang J Oncol Rep; 2018 May; 39(5):2297-2305. PubMed ID: 29517105 [TBL] [Abstract][Full Text] [Related]
27. Microarray profile analysis identifies ETS1 as potential biomarker regulated by miR-23b and modulates TCF4 in gastric cancer. Mei D; Qi Y; Xia Y; Ma J; Hu H; Ai J; Chen L; Wu N; Liao D World J Surg Oncol; 2021 Oct; 19(1):311. PubMed ID: 34686186 [TBL] [Abstract][Full Text] [Related]
28. Identification and interaction analysis of key genes and microRNAs in hepatocellular carcinoma by bioinformatics analysis. Mou T; Zhu D; Wei X; Li T; Zheng D; Pu J; Guo Z; Wu Z World J Surg Oncol; 2017 Mar; 15(1):63. PubMed ID: 28302149 [TBL] [Abstract][Full Text] [Related]
29. Exploration of the mechanism of colorectal cancer metastasis using microarray analysis. Chen S; Wang Y; Zhang L; Su Y; Zhang M; Wang J; Zhang X Oncol Lett; 2017 Dec; 14(6):6671-6677. PubMed ID: 29163694 [TBL] [Abstract][Full Text] [Related]
30. Biomarker identification and trans-regulatory network analyses in esophageal adenocarcinoma and Barrett's esophagus. Lv J; Guo L; Wang JH; Yan YZ; Zhang J; Wang YY; Yu Y; Huang YF; Zhao HP World J Gastroenterol; 2019 Jan; 25(2):233-244. PubMed ID: 30670912 [TBL] [Abstract][Full Text] [Related]
31. Identification of hub genes, key miRNAs and potential molecular mechanisms of colorectal cancer. Wu S; Wu F; Jiang Z Oncol Rep; 2017 Oct; 38(4):2043-2050. PubMed ID: 28902367 [TBL] [Abstract][Full Text] [Related]
32. Bioinformatic Analysis Identifies of Potential miRNA-mRNA Regulatory Networks Involved in the Pathogenesis of Lung Cancer. Hao D; Li Y; Shi J; Jiang J Comput Intell Neurosci; 2022; 2022():6295934. PubMed ID: 36211008 [TBL] [Abstract][Full Text] [Related]
33. Identification of key genes and construction of microRNA-mRNA regulatory networks in multiple myeloma by integrated multiple GEO datasets using bioinformatics analysis. Gao H; Wang H; Yang W Int J Hematol; 2017 Jul; 106(1):99-107. PubMed ID: 28316065 [TBL] [Abstract][Full Text] [Related]
34. Identification of potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma. Pan Y; Lu L; Chen J; Zhong Y; Dai Z Hereditas; 2018; 155():21. PubMed ID: 29760609 [TBL] [Abstract][Full Text] [Related]
35. In silico identification of key genes and signaling pathways targeted by a panel of signature microRNAs in prostate cancer. Baruah MM; Sharma N Med Oncol; 2019 Apr; 36(5):43. PubMed ID: 30937635 [TBL] [Abstract][Full Text] [Related]
36. Identification and interaction analysis of key miRNAs in medullary thyroid carcinoma by bioinformatics analysis. Zhang L; Lu D; Liu M; Zhang M; Peng Q Mol Med Rep; 2019 Sep; 20(3):2316-2324. PubMed ID: 31322209 [TBL] [Abstract][Full Text] [Related]
37. Identification of the Pathogenic Biomarkers for Hepatocellular Carcinoma Based on RNA-seq Analyses. Jiang W; Zhang L; Guo Q; Wang H; Ma M; Sun J; Chen C Pathol Oncol Res; 2019 Jul; 25(3):1207-1213. PubMed ID: 30680535 [TBL] [Abstract][Full Text] [Related]
38. Identifying microRNA-mRNA regulatory network in colorectal cancer by a combination of expression profile and bioinformatics analysis. Fu J; Tang W; Du P; Wang G; Chen W; Li J; Zhu Y; Gao J; Cui L BMC Syst Biol; 2012 Jun; 6():68. PubMed ID: 22703586 [TBL] [Abstract][Full Text] [Related]
39. Exploring the molecular mechanisms of osteosarcoma by the integrated analysis of mRNAs and miRNA microarrays. Shen H; Wang W; Ni B; Zou Q; Lu H; Wang Z Int J Mol Med; 2018 Jul; 42(1):21-30. PubMed ID: 29620143 [TBL] [Abstract][Full Text] [Related]
40. Identification of Differentially Expressed Genes and miRNAs Associated with Esophageal Squamous Cell Carcinoma by Integrated Analysis of Microarray Data. Zhang L; Chen J; Cheng T; Yang H; Pan C; Li H Biomed Res Int; 2020; 2020():1980921. PubMed ID: 32714975 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]