These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30272744)

  • 1. Waveguide-enhanced Raman spectroscopy of trace chemical warfare agent simulants.
    Tyndall NF; Stievater TH; Kozak DA; Koo K; McGill RA; Pruessner MW; Rabinovich WS; Holmstrom SA
    Opt Lett; 2018 Oct; 43(19):4803-4806. PubMed ID: 30272744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene Nanoplatelet-Polymer Chemiresistive Sensor Arrays for the Detection and Discrimination of Chemical Warfare Agent Simulants.
    Wiederoder MS; Nallon EC; Weiss M; McGraw SK; Schnee VP; Bright CJ; Polcha MP; Paffenroth R; Uzarski JR
    ACS Sens; 2017 Nov; 2(11):1669-1678. PubMed ID: 29019400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides.
    Dhakal A; Subramanian AZ; Wuytens P; Peyskens F; Le Thomas N; Baets R
    Opt Lett; 2014 Jul; 39(13):4025-8. PubMed ID: 24978798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Figure-of-Merit Characterization of Hydrogen-Bond Acidic Sorbents for Waveguide-Enhanced Raman Spectroscopy.
    Tyndall NF; Stievater TH; Kozak DA; Pruessner MW; Roxworthy BJ; Rabinovich WS; Roberts CA; McGill RA; Miller BL; Luta E; Yates MZ
    ACS Sens; 2020 Mar; 5(3):831-836. PubMed ID: 32153176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ionization process of chemical warfare agent simulants in low temperature plasma ionization.
    Li B; Kong J; Zhang L; Fu W; Zhang Z; Li C
    Eur J Mass Spectrom (Chichester); 2020 Oct; 26(5):341-350. PubMed ID: 32819167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer.
    Smith JN; Noll RJ; Cooks RG
    Rapid Commun Mass Spectrom; 2011 May; 25(10):1437-44. PubMed ID: 21504010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultraviolet Raman spectra and cross-sections of the G-series nerve agents.
    Christesen SD; Pendell Jones J; Lochner JM; Hyre AM
    Appl Spectrosc; 2008 Oct; 62(10):1078-83. PubMed ID: 18926015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Different Sensitive Behaviors of a Hydrogen-Bond Acidic Polymer-Coated SAW Sensor for Chemical Warfare Agents and Their Simulants.
    Long Y; Wang Y; Du X; Cheng L; Wu P; Jiang Y
    Sensors (Basel); 2015 Jul; 15(8):18302-14. PubMed ID: 26225975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer.
    Hu G; Xiong W; Luo H; Shi H; Li Z; Shen J; Fang X; Xu B; Zhang J
    Appl Spectrosc; 2018 Jan; 72(1):151-158. PubMed ID: 28627233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concise and Efficient Fluorescent Probe via an Intromolecular Charge Transfer for the Chemical Warfare Agent Mimic Diethylchlorophosphate Vapor Detection.
    Yao J; Fu Y; Xu W; Fan T; Gao Y; He Q; Zhu D; Cao H; Cheng J
    Anal Chem; 2016 Feb; 88(4):2497-501. PubMed ID: 26776457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of chemical and biological warfare agent simulants by surface-enhanced Raman spectroscopy and multivariate statistical techniques.
    Pearman WF; Fountain AW
    Appl Spectrosc; 2006 Apr; 60(4):356-65. PubMed ID: 16613630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of chemical warfare agents by portable Raman spectrometer with both 785nm and 1064nm excitation.
    Kondo T; Hashimoto R; Ohrui Y; Sekioka R; Nogami T; Muta F; Seto Y
    Forensic Sci Int; 2018 Oct; 291():23-38. PubMed ID: 30125768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.
    Martin AN; Farquar GR; Frank M; Gard EE; Fergenson DP
    Anal Chem; 2007 Aug; 79(16):6368-75. PubMed ID: 17630721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.
    Satoh T; Kishi S; Nagashima H; Tachikawa M; Kanamori-Kataoka M; Nakagawa T; Kitagawa N; Tokita K; Yamamoto S; Seto Y
    Anal Chim Acta; 2015 Mar; 865():39-52. PubMed ID: 25732583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges in Fluorescence Detection of Chemical Warfare Agent Vapors Using Solid-State Films.
    Fan S; Zhang G; Dennison GH; FitzGerald N; Burn PL; Gentle IR; Shaw PE
    Adv Mater; 2020 May; 32(18):e1905785. PubMed ID: 31692155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of dimethyl methylphosphonate by thin water film confined surface-enhanced Raman scattering method.
    Wang J; Duan G; Liu G; Li Y; Chen Z; Xu L; Cai W
    J Hazard Mater; 2016 Feb; 303():94-100. PubMed ID: 26513568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced Raman spectra of VX and its hydrolysis products.
    Farquharson S; Gift A; Maksymiuk P; Inscore F
    Appl Spectrosc; 2005 May; 59(5):654-60. PubMed ID: 15969811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of chemical warfare agent simulants and hydrolysis products in biological samples by paper spray mass spectrometry.
    McKenna J; Dhummakupt ES; Connell T; Demond PS; Miller DB; Michael Nilles J; Manicke NE; Glaros T
    Analyst; 2017 May; 142(9):1442-1451. PubMed ID: 28338135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-enhanced Raman spectroscopy of half-mustard agent.
    Stuart DA; Biggs KB; Van Duyne RP
    Analyst; 2006 Apr; 131(4):568-72. PubMed ID: 16568174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing.
    Kwon OS; Park SJ; Lee JS; Park E; Kim T; Park HW; You SA; Yoon H; Jang J
    Nano Lett; 2012 Jun; 12(6):2797-802. PubMed ID: 22545863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.