BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30272752)

  • 1. Transmission matrix-based Electric field Monte Carlo study and experimental validation of the propagation characteristics of Bessel beams in turbid media.
    Zhu X; Lu L; Cao Z; Zeng B; Xu M
    Opt Lett; 2018 Oct; 43(19):4835-4838. PubMed ID: 30272752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformations of circularly polarized Bessel vortex beam reflected and transmitted by a uniaxial anisotropic slab.
    Li H; Liu J; Bai L; Wu Z
    Appl Opt; 2018 Sep; 57(25):7353-7362. PubMed ID: 30182956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric field Monte Carlo simulation of polarized light propagation in turbid media.
    Xu M
    Opt Express; 2004 Dec; 12(26):6530-9. PubMed ID: 19488304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation of the OAM mode carried by partially coherent modified Bessel-Gaussian beams in an anisotropic non-Kolmogorov marine atmosphere.
    Zhu Y; Chen M; Zhang Y; Li Y
    J Opt Soc Am A Opt Image Sci Vis; 2016 Dec; 33(12):2277-2283. PubMed ID: 27906254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propagation of polarized light in turbid media: simulated animation sequences.
    Yao G; Wang L
    Opt Express; 2000 Aug; 7(5):198-203. PubMed ID: 19407865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence.
    Aksenov VP; Kolosov VV; Pogutsa CE
    Appl Opt; 2014 Jun; 53(17):3607-14. PubMed ID: 24921122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propagation and dynamical characteristics of a Bessel-Gaussian beam in a chiral medium.
    Hui Y; Cui Z; Li Y; Zhao W; Han Y
    J Opt Soc Am A Opt Image Sci Vis; 2018 Aug; 35(8):1299-1305. PubMed ID: 30110291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probability density of the orbital angular momentum mode of Hankel-Bessel beams in an atmospheric turbulence.
    Zhu Y; Liu X; Gao J; Zhang Y; Zhao F
    Opt Express; 2014 Apr; 22(7):7765-72. PubMed ID: 24718152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propagation of modulated optical beams carrying orbital angular momentum in turbid water.
    Cochenour B; Morgan K; Miller K; Johnson E; Dunn K; Mullen L
    Appl Opt; 2016 Nov; 55(31):C34-C38. PubMed ID: 27828256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues.
    Hayakawa CK; Potma EO; Venugopalan V
    Biomed Opt Express; 2011 Jan; 2(2):278-90. PubMed ID: 21339874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams.
    Yuan Y; Lei T; Li Z; Li Y; Gao S; Xie Z; Yuan X
    Sci Rep; 2017 Feb; 7():42276. PubMed ID: 28186198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation properties of an optical vortex carried by a Bessel-Gaussian beam in anisotropic turbulence.
    Cheng M; Guo L; Li J; Huang Q
    J Opt Soc Am A Opt Image Sci Vis; 2016 Aug; 33(8):1442-50. PubMed ID: 27505641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restriction on orbital angular momentum distribution: a role of media in vortex beams propagation.
    Zhang T; Liu YD; Yang K; Wang J; Liu P; Yang Y
    Opt Express; 2018 Jun; 26(13):17227-17235. PubMed ID: 30119536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplitude and phase of tightly focused laser beams in turbid media.
    Hayakawa CK; Venugopalan V; Krishnamachari VV; Potma EO
    Phys Rev Lett; 2009 Jul; 103(4):043903. PubMed ID: 19659354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superpositions of asymmetrical Bessel beams.
    Kotlyar VV; Kovalev AA; Soifer VA
    J Opt Soc Am A Opt Image Sci Vis; 2015 Jun; 32(6):1046-52. PubMed ID: 26367037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of the asymmetric Bessel beams with arbitrary orientation using a digital micromirror device.
    Gong L; Qiu XZ; Ren YX; Zhu HQ; Liu WW; Zhou JH; Zhong MC; Chu XX; Li YM
    Opt Express; 2014 Nov; 22(22):26763-76. PubMed ID: 25401824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling focusing Gaussian beams in a turbid medium with Monte Carlo simulations.
    Hokr BH; Bixler JN; Elpers G; Zollars B; Thomas RJ; Yakovlev VV; Scully MO
    Opt Express; 2015 Apr; 23(7):8699-705. PubMed ID: 25968708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of target depth in a turbid medium with polarization-dependent transmitted signals.
    Sun CW; Liu KC; Wang YM; Wang HH; Kiang YW; Liu HK; Yang CC
    J Opt Soc Am A Opt Image Sci Vis; 2003 Nov; 20(11):2106-12. PubMed ID: 14620338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light backscattering polarization patterns from turbid media: theory and experiment.
    Raković MJ; Kattawar GW; Mehrubeoğlu MB; Cameron BD; Wang LV; Rastegar S; Coté GL
    Appl Opt; 1999 May; 38(15):3399-408. PubMed ID: 18319938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution.
    Berrocal E; Sedarsky DL; Paciaroni ME; Meglinski IV; Linne MA
    Opt Express; 2007 Aug; 15(17):10649-65. PubMed ID: 19547419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.