BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 30272788)

  • 1. Response of Soil Surface Greenhouse Gas Fluxes to Crop Residue Removal and Cover Crops under a Corn-Soybean Rotation.
    Wegner BR; Chalise KS; Singh S; Lai L; Abagandura GO; Kumar S; Osborne SL; Lehman RM; Jagadamma S
    J Environ Qual; 2018 Sep; 47(5):1146-1154. PubMed ID: 30272788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of crop rotational diversity and grazing under integrated crop-livestock system on soil surface greenhouse gas fluxes.
    Abagandura GO; Şentürklü S; Singh N; Kumar S; Landblom DG; Ringwall K
    PLoS One; 2019; 14(5):e0217069. PubMed ID: 31116765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado.
    Mosier AR; Halvorson AD; Reule CA; Liu XJ
    J Environ Qual; 2006; 35(4):1584-98. PubMed ID: 16825479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-term grazing of cover crops and maize residue impacts on soil greenhouse gas fluxes in two Mollisols.
    Singh N; Abagandura GO; Kumar S
    J Environ Qual; 2020 May; 49(3):628-639. PubMed ID: 33016385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Greenhouse gas emissions from soils in corn-based cropping systems.
    Kazula MJ; Lauer JG
    J Environ Qual; 2023; 52(6):1080-1091. PubMed ID: 37742040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benefits of sustainable management practices on mitigating greenhouse gas emissions in soybean crop (Glycine max).
    Langeroodi ARS; Adewale Osipitan O; Radicetti E
    Sci Total Environ; 2019 Apr; 660():1593-1601. PubMed ID: 30743950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrous oxide emissions from corn-soybean systems in the midwest.
    Parkin TB; Kaspar TC
    J Environ Qual; 2006; 35(4):1496-506. PubMed ID: 16825470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Greenhouse gas fluxes (CO
    Maier R; Hörtnagl L; Buchmann N
    Sci Total Environ; 2022 Nov; 849():157541. PubMed ID: 35882341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring and modeling the effects of drainage water management on soil greenhouse gas fluxes from corn and soybean fields.
    Nangia V; Sunohara MD; Topp E; Gregorich EG; Drury CF; Gottschall N; Lapen DR
    J Environ Manage; 2013 Nov; 129():652-64. PubMed ID: 23910796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term nitrous oxide fluxes in annual and perennial agricultural and unmanaged ecosystems in the upper Midwest USA.
    Gelfand I; Shcherbak I; Millar N; Kravchenko AN; Robertson GP
    Glob Chang Biol; 2016 Nov; 22(11):3594-3607. PubMed ID: 27510313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.
    Adler PR; Del Grosso SJ; Parton WJ
    Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of net greenhouse gas balance using crop- and soil-based approaches: two case studies.
    Huang J; Chen Y; Sui P; Gao W
    Sci Total Environ; 2013 Jul; 456-457():299-306. PubMed ID: 23619090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Net greenhouse gas balance with cover crops in semi-arid irrigated cropping systems.
    Acharya P; Ghimire R; Paye WS; Ganguli AC; DelGrosso SJ
    Sci Rep; 2022 Jul; 12(1):12386. PubMed ID: 35859052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers.
    Tribouillois H; Constantin J; Justes E
    Glob Chang Biol; 2018 Jun; 24(6):2513-2529. PubMed ID: 29443447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The greenhouse gas cost of agricultural intensification with groundwater irrigation in a Midwest U.S. row cropping system.
    McGill BM; Hamilton SK; Millar N; Robertson GP
    Glob Chang Biol; 2018 Dec; 24(12):5948-5960. PubMed ID: 30295393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen use and carbon sequestered by corn rotations in the northern corn belt, U.S.
    Pikul JL; Schumacher TE; Vigil M
    ScientificWorldJournal; 2001 Sep; 1 Suppl 2():707-13. PubMed ID: 12806069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn.
    Jin VL; Schmer MR; Stewart CE; Sindelar AJ; Varvel GE; Wienhold BJ
    Glob Chang Biol; 2017 Jul; 23(7):2848-2862. PubMed ID: 28135027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon footprint and net carbon gain of major long-term cropping systems under no-tillage.
    Bansal S; Yin X; Schneider L; Sykes V; Jagadamma S; Lee J
    J Environ Manage; 2022 Apr; 307():114505. PubMed ID: 35085973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greenhouse gas fluxes in an eastern Corn Belt soil: weather, nitrogen source, and rotation.
    Hernandez-Ramirez G; Brouder SM; Smith DR; Van Scoyoc GE
    J Environ Qual; 2009; 38(3):841-54. PubMed ID: 19329673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of Winter Cover Cropping on Soil Greenhouse Gas Emissions in a Dryland Spring Maize Field on the Loess Plateau of China].
    Zhang SH; Wang J; Fang ZW; Fu X
    Huan Jing Ke Xue; 2022 Sep; 43(9):4848-4857. PubMed ID: 36096625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.