These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30272816)

  • 1. Remote ischemic conditioning as a cytoprotective strategy in vasculopathies during hyperhomocysteinemia: An emerging research perspective.
    Majumder A; Singh M; George AK; Homme RP; Laha A; Tyagi SC
    J Cell Biochem; 2019 Jan; 120(1):77-92. PubMed ID: 30272816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Hyperhomocysteinemia on Redox Balance and Redox Defence Enzymes in Ischemia-Reperfusion Injury and/or After Ischemic Preconditioning in Rats.
    Petráš M; Drgová A; Kovalská M; Tatarková Z; Tóthová B; Križanová O; Lehotský J
    Cell Mol Neurobiol; 2017 Nov; 37(8):1417-1431. PubMed ID: 28210876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restoration of skeletal muscle homeostasis by hydrogen sulfide during hyperhomocysteinemia-mediated oxidative/ER stress condition
    Majumder A; Singh M; George AK; Tyagi SC
    Can J Physiol Pharmacol; 2019 Jun; 97(6):441-456. PubMed ID: 30422673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction.
    Tawfik A; Samra YA; Elsherbiny NM; Al-Shabrawey M
    Biomolecules; 2020 Jul; 10(8):. PubMed ID: 32751132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of cardiovascular remodeling in hyperhomocysteinemia.
    Steed MM; Tyagi SC
    Antioxid Redox Signal; 2011 Oct; 15(7):1927-43. PubMed ID: 21126196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms involved in the ischemic tolerance in brain: effect of the homocysteine.
    Lehotsky J; Petras M; Kovalska M; Tothova B; Drgova A; Kaplan P
    Cell Mol Neurobiol; 2015 Jan; 35(1):7-15. PubMed ID: 25194713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroprotective Effect of Hydrogen Sulfide in Hyperhomocysteinemia Is Mediated Through Antioxidant Action Involving Nrf2.
    Kumar M; Sandhir R
    Neuromolecular Med; 2018 Dec; 20(4):475-490. PubMed ID: 30105650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial mechanism of oxidative stress and systemic hypertension in hyperhomocysteinemia.
    Tyagi N; Moshal KS; Ovechkin AV; Rodriguez W; Steed M; Henderson B; Roberts AM; Joshua IG; Tyagi SC
    J Cell Biochem; 2005 Nov; 96(4):665-71. PubMed ID: 16149054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperhomocysteinaemia and vascular injury: advances in mechanisms and drug targets.
    Fu Y; Wang X; Kong W
    Br J Pharmacol; 2018 Apr; 175(8):1173-1189. PubMed ID: 28836260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease.
    Austin RC; Lentz SR; Werstuck GH
    Cell Death Differ; 2004 Jul; 11 Suppl 1():S56-64. PubMed ID: 15243582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homocysteine causes vascular endothelial dysfunction by disrupting endoplasmic reticulum redox homeostasis.
    Wu X; Zhang L; Miao Y; Yang J; Wang X; Wang CC; Feng J; Wang L
    Redox Biol; 2019 Jan; 20():46-59. PubMed ID: 30292945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homocysteine, intracellular signaling and thrombotic disorders.
    Dionisio N; Jardín I; Salido GM; Rosado JA
    Curr Med Chem; 2010; 17(27):3109-19. PubMed ID: 20629621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homocysteine facilitates LOX-1 activation and endothelial death through the PKCβ and SIRT1/HSF1 mechanism: relevance to human hyperhomocysteinaemia.
    Hung CH; Chan SH; Chu PM; Tsai KL
    Clin Sci (Lond); 2015 Sep; 129(6):477-87. PubMed ID: 25982096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of hyperhomocysteinemia on the cellular redox state--impact on homocysteine-induced endothelial dysfunction.
    Weiss N; Heydrick SJ; Postea O; Keller C; Keaney JF; Loscalzo J
    Clin Chem Lab Med; 2003 Nov; 41(11):1455-61. PubMed ID: 14656025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Controversial Role of Homocysteine in Neurology: From Labs to Clinical Practice.
    Moretti R; Caruso P
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30626145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defective homocysteine metabolism: potential implications for skeletal muscle malfunction.
    Veeranki S; Tyagi SC
    Int J Mol Sci; 2013 Jul; 14(7):15074-91. PubMed ID: 23873298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of hyperhomocysteinemia to atherosclerosis: Causal relationship and potential mechanisms.
    Zhou J; Austin RC
    Biofactors; 2009; 35(2):120-9. PubMed ID: 19449439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Homocysteine in the Ischemic Stroke and Development of Ischemic Tolerance.
    Lehotský J; Tothová B; Kovalská M; Dobrota D; Beňová A; Kalenská D; Kaplán P
    Front Neurosci; 2016; 10():538. PubMed ID: 27932944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vascular oxidant stress and inflammation in hyperhomocysteinemia.
    Papatheodorou L; Weiss N
    Antioxid Redox Signal; 2007 Nov; 9(11):1941-58. PubMed ID: 17822365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperhomocysteinemia and its role in the development of atherosclerosis.
    Lawrence de Koning AB; Werstuck GH; Zhou J; Austin RC
    Clin Biochem; 2003 Sep; 36(6):431-41. PubMed ID: 12951169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.