These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30272903)

  • 1. [Histological and Immunocytochemical Investigation of Human Coronary Vessel Development with ANTI-CD34 Antibodies].
    Pototska OY
    Ontogenez; 2016; 47(6):373-85. PubMed ID: 30272903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras.
    Poelmann RE; Gittenberger-de Groot AC; Mentink MM; Bökenkamp R; Hogers B
    Circ Res; 1993 Sep; 73(3):559-68. PubMed ID: 8348697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of the coronary vessels and their differentiation into arteries and veins in the embryonic quail heart.
    Vrancken Peeters MP; Gittenberger-de Groot AC; Mentink MM; Hungerford JE; Little CD; Poelmann RE
    Dev Dyn; 1997 Mar; 208(3):338-48. PubMed ID: 9056638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis.
    Chen HI; Sharma B; Akerberg BN; Numi HJ; Kivelä R; Saharinen P; Aghajanian H; McKay AS; Bogard PE; Chang AH; Jacobs AH; Epstein JA; Stankunas K; Alitalo K; Red-Horse K
    Development; 2014 Dec; 141(23):4500-12. PubMed ID: 25377552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Avian coronary endothelium is a mosaic of sinus venosus- and ventricle-derived endothelial cells in a region-specific manner.
    Kamimura T; Yamagishi T; Nakajima Y
    Dev Growth Differ; 2018 Feb; 60(2):97-111. PubMed ID: 29392712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in development of coronary arteries and veins.
    Vrancken Peeters MP; Gittenberger-de Groot AC; Mentink MM; Hungerford JE; Little CD; Poelmann RE
    Cardiovasc Res; 1997 Oct; 36(1):101-10. PubMed ID: 9415278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Avian embryonic coronary arterio-venous patterning involves the contribution of different endothelial and endocardial cell populations.
    Palmquist-Gomes P; Guadix JA; Pérez-Pomares JM
    Dev Dyn; 2018 May; 247(5):686-698. PubMed ID: 29226547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the coronary blood supply: changing concepts and current ideas.
    Bernanke DH; Velkey JM
    Anat Rec; 2002 Aug; 269(4):198-208. PubMed ID: 12209558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endocardium Minimally Contributes to Coronary Endothelium in the Embryonic Ventricular Free Walls.
    Zhang H; Pu W; Li G; Huang X; He L; Tian X; Liu Q; Zhang L; Wu SM; Sucov HM; Zhou B
    Circ Res; 2016 Jun; 118(12):1880-93. PubMed ID: 27056912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental Progression of the Coronary Vasculature in Human Embryos and Fetuses.
    Tomanek RJ
    Anat Rec (Hoboken); 2016 Jan; 299(1):25-41. PubMed ID: 26475042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The origin of the epicardium and the embryonic myocardial circulation in the mouse.
    Virágh S; Challice CE
    Anat Rec; 1981 Sep; 201(1):157-68. PubMed ID: 7305017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation.
    Gittenberger-de Groot AC; Vrancken Peeters MP; Bergwerff M; Mentink MM; Poelmann RE
    Circ Res; 2000 Nov; 87(11):969-71. PubMed ID: 11090540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial cell origin and migration in embryonic heart and cranial blood vessel development.
    Coffin JD; Poole TJ
    Anat Rec; 1991 Nov; 231(3):383-95. PubMed ID: 1763820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries.
    Tian X; Hu T; Zhang H; He L; Huang X; Liu Q; Yu W; He L; Yang Z; Zhang Z; Zhong TP; Yang X; Yang Z; Yan Y; Baldini A; Sun Y; Lu J; Schwartz RJ; Evans SM; Gittenberger-de Groot AC; Red-Horse K; Zhou B
    Cell Res; 2013 Sep; 23(9):1075-90. PubMed ID: 23797856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fibulin-2 expression marks transformed mesenchymal cells in developing cardiac valves, aortic arch vessels, and coronary vessels.
    Tsuda T; Wang H; Timpl R; Chu ML
    Dev Dyn; 2001 Sep; 222(1):89-100. PubMed ID: 11507771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endocardial tip cells in the human embryo - facts and hypotheses.
    Rusu MC; Poalelungi CV; Vrapciu AD; Nicolescu MI; Hostiuc S; Mogoanta L; Taranu T
    PLoS One; 2015; 10(1):e0115853. PubMed ID: 25617624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connecting the coronaries: how the coronary plexus develops and is functionalized.
    Dyer L; Pi X; Patterson C
    Dev Biol; 2014 Nov; 395(1):111-9. PubMed ID: 25173872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signaling during epicardium and coronary vessel development.
    Pérez-Pomares JM; de la Pompa JL
    Circ Res; 2011 Dec; 109(12):1429-42. PubMed ID: 22158650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart.
    Dettman RW; Denetclaw W; Ordahl CP; Bristow J
    Dev Biol; 1998 Jan; 193(2):169-81. PubMed ID: 9473322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial and epicardial cells.
    Guadix JA; Carmona R; Muñoz-Chápuli R; Pérez-Pomares JM
    Dev Dyn; 2006 Apr; 235(4):1014-26. PubMed ID: 16456846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.