These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30273451)

  • 1. Zinc Oxide-Catalyzed Dehydrogenation of Primary Alcohols into Carboxylic Acids.
    Monda F; Madsen R
    Chemistry; 2018 Dec; 24(67):17832-17837. PubMed ID: 30273451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manganese(III) Porphyrin-Catalyzed Dehydrogenation of Alcohols to form Imines, Tertiary Amines and Quinolines.
    Azizi K; Akrami S; Madsen R
    Chemistry; 2019 May; 25(25):6439-6446. PubMed ID: 30883993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iridium Catalysts for Acceptorless Dehydrogenation of Alcohols to Carboxylic Acids: Scope and Mechanism.
    Cherepakhin V; Williams TJ
    ACS Catal; 2018 May; 8(5):3754-3763. PubMed ID: 30288338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver-Catalyzed Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols.
    Ghalehshahi HG; Madsen R
    Chemistry; 2017 Sep; 23(49):11920-11926. PubMed ID: 28714546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols and Hydroxide Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex.
    Santilli C; Makarov IS; Fristrup P; Madsen R
    J Org Chem; 2016 Oct; 81(20):9931-9938. PubMed ID: 27685175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of Alcohol-Water Dehydrogenative Coupling into Carboxylic Acid Using Milstein's Catalyst: A Detailed Investigation of the Outer-Sphere PES in the Reaction of Aldehydes with an Octahedral Ruthenium Hydroxide.
    Hasanayn F; Al-Assi LM; Moussawi RN; Omar BS
    Inorg Chem; 2016 Aug; 55(16):7886-902. PubMed ID: 27467132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruthenium Catalyzed Dehydrogenation of Alcohols and Mechanistic Study.
    Awasthi MK; Singh SK
    Inorg Chem; 2019 Nov; 58(21):14912-14923. PubMed ID: 31625731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domino rhodium/palladium-catalyzed dehydrogenation reactions of alcohols to acids by hydrogen transfer to inactivated alkenes.
    Trincado M; Grützmacher H; Vizza F; Bianchini C
    Chemistry; 2010 Mar; 16(9):2751-7. PubMed ID: 20082396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of the formation of carboxylate from alcohols and water catalyzed by a bipyridine-based ruthenium complex: a computational study.
    Li H; Hall MB
    J Am Chem Soc; 2014 Jan; 136(1):383-95. PubMed ID: 24328295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomically Dispersed Co Clusters Anchored on N-doped Carbon Nanotubes for Efficient Dehydrogenation of Alcohols and Subsequent Conversion to Carboxylic Acids.
    Li B; Fang J; Xu D; Zhao H; Zhu H; Zhang F; Dong Z
    ChemSusChem; 2021 Oct; 14(20):4536-4545. PubMed ID: 34370902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iridium-catalyzed dehydrogenative decarbonylation of primary alcohols with the liberation of syngas.
    Olsen EP; Madsen R
    Chemistry; 2012 Dec; 18(50):16023-9. PubMed ID: 23108889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and mechanistic investigation of the manganese(iii) salen-catalyzed dehydrogenation of alcohols.
    Samuelsen SV; Santilli C; Ahlquist MSG; Madsen R
    Chem Sci; 2019 Jan; 10(4):1150-1157. PubMed ID: 30774913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Importance of Cannizzaro-Type Reactions during Electrocatalytic Reduction of Carbon Dioxide.
    Birdja YY; Koper MT
    J Am Chem Soc; 2017 Feb; 139(5):2030-2034. PubMed ID: 28099805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and theoretical mechanistic investigation of the iridium-catalyzed dehydrogenative decarbonylation of primary alcohols.
    Olsen EP; Singh T; Harris P; Andersson PG; Madsen R
    J Am Chem Soc; 2015 Jan; 137(2):834-42. PubMed ID: 25545272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-Carbon Bond Formation and Hydrogen Production in the Ketonization of Aldehydes.
    Orozco LM; Renz M; Corma A
    ChemSusChem; 2016 Sep; 9(17):2430-42. PubMed ID: 27539722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobalt-Catalyzed Acceptorless Dehydrogenation of Alcohols to Carboxylate Salts and Hydrogen.
    Pradhan DR; Pattanaik S; Kishore J; Gunanathan C
    Org Lett; 2020 Mar; 22(5):1852-1857. PubMed ID: 32045254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the mechanisms of cobalt-catalyzed hydrogenation and dehydrogenation reactions.
    Zhang G; Vasudevan KV; Scott BL; Hanson SK
    J Am Chem Soc; 2013 Jun; 135(23):8668-81. PubMed ID: 23713752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into dehydrogenative coupling of alcohols and amines catalyzed by a (PNN)-Ru(II) hydride complex: unusual metal-ligand cooperation.
    Zeng G; Li S
    Inorg Chem; 2011 Nov; 50(21):10572-80. PubMed ID: 21942421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dehydrogenation of Alcohols to Carboxylic Acid Catalyzed by in Situ-Generated Facial Ruthenium-
    Liu HM; Jian L; Li C; Zhang CC; Fu HY; Zheng XL; Chen H; Li RX
    J Org Chem; 2019 Jul; 84(14):9151-9160. PubMed ID: 31273988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amide synthesis from alcohols and amines catalyzed by ruthenium N-heterocyclic carbene complexes.
    Dam JH; Osztrovszky G; Nordstrøm LU; Madsen R
    Chemistry; 2010 Jun; 16(23):6820-7. PubMed ID: 20437429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.