BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30273488)

  • 1. Coherences of Bacteriochlorophyll a Uncovered Using 3D-Electronic Spectroscopy.
    Irgen-Gioro S; Spencer AP; Hutson WO; Harel E
    J Phys Chem Lett; 2018 Oct; 9(20):6077-6081. PubMed ID: 30273488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Vibrational Coherence in Monomeric Bacteriochlorophyll a by Two-Dimensional Electronic Spectroscopy.
    Policht VR; Niedringhaus A; Ogilvie JP
    J Phys Chem Lett; 2018 Nov; 9(22):6631-6637. PubMed ID: 30376340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional electronic spectroscopy of bacteriochlorophyll a in solution: Elucidating the coherence dynamics of the Fenna-Matthews-Olson complex using its chromophore as a control.
    Fransted KA; Caram JR; Hayes D; Engel GS
    J Chem Phys; 2012 Sep; 137(12):125101. PubMed ID: 23020349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nature of coherences in the B820 bacteriochlorophyll dimer revealed by two-dimensional electronic spectroscopy.
    Ferretti M; Novoderezhkin VI; Romero E; Augulis R; Pandit A; Zigmantas D; van Grondelle R
    Phys Chem Chem Phys; 2014 Jun; 16(21):9930-9. PubMed ID: 24430275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational coherence from the dipyridine complex of bacteriochlorophyll a: intramolecular modes in the 10-220-cm(-1) regime, intermolecular solvent modes, and relevance to photosynthesis.
    Shelly KR; Carson EA; Beck WF
    J Am Chem Soc; 2003 Oct; 125(39):11810-1. PubMed ID: 14505390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of intra-pigment vibrations on dynamics of photosynthetic exciton.
    Sato Y; Doolittle B
    J Chem Phys; 2014 Nov; 141(18):185102. PubMed ID: 25399162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Uniform Excited State Electronic-Vibrational Coupling of Pigment-Protein Complexes.
    Irgen-Gioro S; Gururangan K; Spencer AP; Harel E
    J Phys Chem Lett; 2020 Dec; 11(24):10388-10395. PubMed ID: 33238100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. II. 1D spectra for a dimer.
    Tiwari V; Jonas DM
    J Chem Phys; 2018 Feb; 148(8):084308. PubMed ID: 29495789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes.
    Hildner R; Brinks D; Nieder JB; Cogdell RJ; van Hulst NF
    Science; 2013 Jun; 340(6139):1448-51. PubMed ID: 23788794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Color Nonlinear Spectroscopy for the Rapid Acquisition of Coherent Dynamics.
    Senlik SS; Policht VR; Ogilvie JP
    J Phys Chem Lett; 2015 Jul; 6(13):2413-20. PubMed ID: 26266711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional electronic spectroscopy of bacteriochlorophyll a with synchronized dual mode-locked lasers.
    Kim J; Jeon J; Yoon TH; Cho M
    Nat Commun; 2020 Nov; 11(1):6029. PubMed ID: 33247112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Force Fields and Quantum Chemistry Approach on Spectral Densities of BChl a in Solution and in FMO Proteins.
    Chandrasekaran S; Aghtar M; Valleau S; Aspuru-Guzik A; Kleinekathöfer U
    J Phys Chem B; 2015 Aug; 119(31):9995-10004. PubMed ID: 26156758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherence Spectroscopy in the Condensed Phase: Insights into Molecular Structure, Environment, and Interactions.
    Dean JC; Scholes GD
    Acc Chem Res; 2017 Nov; 50(11):2746-2755. PubMed ID: 29043773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes.
    Monahan DM; Whaley-Mayda L; Ishizaki A; Fleming GR
    J Chem Phys; 2015 Aug; 143(6):065101. PubMed ID: 26277167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra.
    Fujihashi Y; Fleming GR; Ishizaki A
    J Chem Phys; 2015 Jun; 142(21):212403. PubMed ID: 26049423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic Studies of Cryptophyte Light Harvesting Proteins: Vibrations and Coherent Oscillations.
    Arpin PC; Turner DB; McClure SD; Jumper CC; Mirkovic T; Challa JR; Lee J; Teng CY; Green BR; Wilk KE; Curmi PM; Hoef-Emden K; McCamant DW; Scholes GD
    J Phys Chem B; 2015 Aug; 119(31):10025-34. PubMed ID: 26189800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-Mode Quantum-Classical Path Integral Simulation of Bacteriochlorophyll Dimer Exciton-Vibration Dynamics.
    Bose A; Makri N
    J Phys Chem B; 2020 Jun; 124(24):5028-5038. PubMed ID: 32496772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy and electron transfer in the photosynthetic reaction center complex of Acidiphilium rubrum containing Zn-bacteriochlorophyll a studied by femtosecond up-conversion spectroscopy.
    Tomi T; Shibata Y; Ikeda Y; Taniguchi S; Haik C; Mataga N; Shimada K; Itoh S
    Biochim Biophys Acta; 2007 Jan; 1767(1):22-30. PubMed ID: 17169326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible Changes in the Structural Features of Photosynthetic Light-Harvesting Complex 2 by Removal and Reconstitution of B800 Bacteriochlorophyll a Pigments.
    Saga Y; Hirota K; Asakawa H; Takao K; Fukuma T
    Biochemistry; 2017 Jul; 56(27):3484-3491. PubMed ID: 28657308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective chemical shift assignment of bacteriochlorophyll a in uniformly [13C-15N]-labeled light-harvesting 1 complexes by solid-state NMR in ultrahigh magnetic field.
    Pandit A; Buda F; van Gammeren AJ; Ganapathy S; de Groot HJ
    J Phys Chem B; 2010 May; 114(18):6207-15. PubMed ID: 20408539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.