These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30273787)

  • 1. Considerations for upscaling individual effects of wind energy development towards population-level impacts on wildlife.
    May R; Masden EA; Bennet F; Perron M
    J Environ Manage; 2019 Jan; 230():84-93. PubMed ID: 30273787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-construction bird and bat fatality monitoring studies at wind energy projects in Latin America: A summary and review.
    Agudelo MS; Mabee TJ; Palmer R; Anderson R
    Heliyon; 2021 Jun; 7(6):e07251. PubMed ID: 34189305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Collision Risk Model to Predict Avian Fatalities at Wind Facilities: An Example Using Golden Eagles, Aquila chrysaetos.
    New L; Bjerre E; Millsap B; Otto MC; Runge MC
    PLoS One; 2015; 10(7):e0130978. PubMed ID: 26134412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limited accessibility and bias in wildlife-wind energy knowledge: A bilingual systematic review of a globally distributed bird group.
    Fernández-Bellon D
    Sci Total Environ; 2020 Oct; 737():140238. PubMed ID: 32783846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Industrial wind turbine post-construction bird and bat monitoring: A policy framework for Canada.
    Parisé J; Walker TR
    J Environ Manage; 2017 Oct; 201():252-259. PubMed ID: 28672197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wind energy development and wildlife conservation in Lithuania: A mapping tool for conflict assessment.
    Morkūnė R; Marčiukaitis M; Jurkin V; Gecevičius G; Morkūnas J; Raudonikis L; Markevičius A; Narščius A; Gasiūnaitė ZR
    PLoS One; 2020; 15(1):e0227735. PubMed ID: 31940412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prioritizing Avian Species for Their Risk of Population-Level Consequences from Wind Energy Development.
    Beston JA; Diffendorfer JE; Loss SR; Johnson DH
    PLoS One; 2016; 11(3):e0150813. PubMed ID: 26963254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of bird and bat mortality at wind turbines in the Northeastern United States.
    Choi DY; Wittig TW; Kluever BM
    PLoS One; 2020; 15(8):e0238034. PubMed ID: 32857780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of wind-energy facilities on breeding grassland bird distributions.
    Shaffer JA; Buhl DA
    Conserv Biol; 2016 Feb; 30(1):59-71. PubMed ID: 26213098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing vulnerability of marine bird populations to offshore wind farms.
    Furness RW; Wade HM; Masden EA
    J Environ Manage; 2013 Apr; 119():56-66. PubMed ID: 23454414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consolidating the State of Knowledge: A Synoptical Review of Wind Energy's Wildlife Effects.
    Schuster E; Bulling L; Köppel J
    Environ Manage; 2015 Aug; 56(2):300-31. PubMed ID: 25910869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the cumulative exposure of wildlife to offshore wind energy development.
    Goodale MW; Milman A
    J Environ Manage; 2019 Apr; 235():77-83. PubMed ID: 30677658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors associated with bat mortality at wind energy facilities in the United States.
    Thompson M; Beston JA; Etterson M; Diffendorfer JE; Loss SR
    Biol Conserv; 2017; 215():241-245. PubMed ID: 31048934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A balanced solution to the cumulative threat of industrialized wind farm development on cinereous vultures (Aegypius monachus) in south-eastern Europe.
    Vasilakis DP; Whitfield DP; Kati V
    PLoS One; 2017; 12(2):e0172685. PubMed ID: 28231316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cautious but committed: moving toward adaptive planning and operation strategies for renewable energy's wildlife implications.
    Köppel J; Dahmen M; Helfrich J; Schuster E; Bulling L
    Environ Manage; 2014 Oct; 54(4):744-55. PubMed ID: 25096164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limitations, lack of standardization, and recommended best practices in studies of renewable energy effects on birds and bats.
    Conkling TJ; Loss SR; Diffendorfer JE; Duerr AE; Katzner TE
    Conserv Biol; 2021 Feb; 35(1):64-76. PubMed ID: 31913528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Game bird carcasses are less persistent than raptor carcasses, but can predict raptor persistence dynamics.
    Hallingstad E; Riser-Espinoza D; Brown S; Rabie P; Haddock J; Kosciuch K
    PLoS One; 2023; 18(1):e0279997. PubMed ID: 36595543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collision effects of wind-power generators and other obstacles on birds.
    Drewitt AL; Langston RH
    Ann N Y Acad Sci; 2008; 1134():233-66. PubMed ID: 18566097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing an automated risk management tool to minimize bird and bat mortality at wind facilities.
    Robinson Willmott J; Forcey GM; Hooton LA
    Ambio; 2015 Nov; 44 Suppl 4(Suppl 4):557-71. PubMed ID: 26508344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development by design: mitigating wind development's impacts on wildlife in Kansas.
    Obermeyer B; Manes R; Kiesecker J; Fargione J; Sochi K
    PLoS One; 2011; 6(10):e26698. PubMed ID: 22046333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.