These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30273828)

  • 1. Characteristics of acidogenic fermentation for volatile fatty acid production from food waste at high concentrations of NaCl.
    He X; Yin J; Liu J; Chen T; Shen D
    Bioresour Technol; 2019 Jan; 271():244-250. PubMed ID: 30273828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation.
    Zhang L; Loh KC; Dai Y; Tong YW
    Waste Manag; 2020 May; 109():75-84. PubMed ID: 32388405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acidogenic properties of carbohydrate-rich wasted potato and microbial community analysis: Effect of pH.
    Li Y; Zhang X; Xu H; Mu H; Hua D; Jin F; Meng G
    J Biosci Bioeng; 2019 Jul; 128(1):50-55. PubMed ID: 30648546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced volatile fatty acids production of waste activated sludge under salinity conditions: Performance and mechanisms.
    Su G; Wang S; Yuan Z; Peng Y
    J Biosci Bioeng; 2016 Mar; 121(3):293-8. PubMed ID: 26320405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of polyhydroxyalkanoates (PHAs) by
    Vu DH; Wainaina S; Taherzadeh MJ; Åkesson D; Ferreira JA
    Bioengineered; 2021 Dec; 12(1):2480-2498. PubMed ID: 34115556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volatile fatty acids production from saccharification residue from food waste ethanol fermentation: Effect of pH and microbial community.
    Jin Y; Lin Y; Wang P; Jin R; Gao M; Wang Q; Chang TC; Ma H
    Bioresour Technol; 2019 Nov; 292():121957. PubMed ID: 31430672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula.
    Tang J; Wang XC; Hu Y; Zhang Y; Li Y
    Bioresour Technol; 2017 Jan; 224():544-552. PubMed ID: 27939870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next-generation -omics approaches to drive carboxylate production by acidogenic fermentation of food waste: a review.
    Kumar R; Kumar R; Brar SK; Kaur G
    Bioengineered; 2022; 13(7-12):14987-15002. PubMed ID: 37105768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of acidogenic fermentation for volatile fatty acid production from food waste: Effect of redox potential and inoculum.
    Yin J; Yu X; Zhang Y; Shen D; Wang M; Long Y; Chen T
    Bioresour Technol; 2016 Sep; 216():996-1003. PubMed ID: 27343452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acidogenic fermentation characteristics of different types of protein-rich substrates in food waste to produce volatile fatty acids.
    Shen D; Yin J; Yu X; Wang M; Long Y; Shentu J; Chen T
    Bioresour Technol; 2017 Mar; 227():125-132. PubMed ID: 28013128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways.
    Zhou M; Yan B; Wong JWC; Zhang Y
    Bioresour Technol; 2018 Jan; 248(Pt A):68-78. PubMed ID: 28693950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of acidogenic fermentation for volatile fatty acid production from protein-rich substrate in food waste.
    Yu X; Yin J; Shen D; Shentu J; Long Y; Chen T
    Waste Manag; 2018 Apr; 74():177-184. PubMed ID: 29208532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of melanoidins on acidogenic fermentation of food waste to produce volatility fatty acids.
    Yin J; Liu J; Chen T; Long Y; Shen D
    Bioresour Technol; 2019 Jul; 284():121-127. PubMed ID: 30927649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidogenic fermentation of potato peel waste for volatile fatty acids production: Effect of initial organic load.
    Lu Y; Chen R; Huang L; Wang X; Chou S; Zhu J
    J Biotechnol; 2023 Sep; 374():114-121. PubMed ID: 37579845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous fermentation of food waste leachate for the production of volatile fatty acids and potential as a denitrification carbon source.
    Kim H; Kim J; Shin SG; Hwang S; Lee C
    Bioresour Technol; 2016 May; 207():440-5. PubMed ID: 26922002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of Volatile Fatty Acids Production from Food Waste by Mature Compost Addition.
    Cheah YK; Dosta J; Mata-Álvarez J
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31426488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical pretreatment enhancing co-fermentation of waste activated sludge and food waste into volatile fatty acids: Performance, microbial community dynamics and metabolism.
    Lin Q; Dong X; Luo J; Zeng Q; Ma J; Wang Z; Chen G; Guo G
    Bioresour Technol; 2022 Oct; 361():127736. PubMed ID: 35932947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment.
    Yin J; Wang K; Yang Y; Shen D; Wang M; Mo H
    Bioresour Technol; 2014 Nov; 171():323-9. PubMed ID: 25218204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel insight into the relationship between organic substrate composition and volatile fatty acids distribution in acidogenic co-fermentation.
    Ma H; Liu H; Zhang L; Yang M; Fu B; Liu H
    Biotechnol Biofuels; 2017; 10():137. PubMed ID: 28559928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses.
    Wu QL; Guo WQ; Zheng HS; Luo HC; Feng XC; Yin RL; Ren NQ
    Bioresour Technol; 2016 Sep; 216():653-60. PubMed ID: 27289056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.