These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30273853)

  • 1. Current approaches for safer design of engineered nanomaterials.
    Hwang R; Mirshafiee V; Zhu Y; Xia T
    Ecotoxicol Environ Saf; 2018 Dec; 166():294-300. PubMed ID: 30273853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate.
    Zhu M; Nie G; Meng H; Xia T; Nel A; Zhao Y
    Acc Chem Res; 2013 Mar; 46(3):622-31. PubMed ID: 22891796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neurotoxicity induced by engineered nanomaterials.
    Ge D; Du Q; Ran B; Liu X; Wang X; Ma X; Cheng F; Sun B
    Int J Nanomedicine; 2019; 14():4167-4186. PubMed ID: 31239675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening.
    Nel A; Xia T; Meng H; Wang X; Lin S; Ji Z; Zhang H
    Acc Chem Res; 2013 Mar; 46(3):607-21. PubMed ID: 22676423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: An overview.
    Rocha TL; Gomes T; Sousa VS; Mestre NC; Bebianno MJ
    Mar Environ Res; 2015 Oct; 111():74-88. PubMed ID: 26152602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms involved in the impact of engineered nanomaterials on the joint toxicity with environmental pollutants.
    Liu Y; Nie Y; Wang J; Wang J; Wang X; Chen S; Zhao G; Wu L; Xu A
    Ecotoxicol Environ Saf; 2018 Oct; 162():92-102. PubMed ID: 29990744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diverse Pathways of Engineered Nanoparticle-Induced NLRP3 Inflammasome Activation.
    Liao X; Liu Y; Zheng J; Zhao X; Cui L; Hu S; Xia T; Si S
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure Activity Relationships of Engineered Nanomaterials in inducing NLRP3 Inflammasome Activation and Chronic Lung Fibrosis.
    Wang X; Sun B; Liu S; Xia T
    NanoImpact; 2017 Apr; 6():99-108. PubMed ID: 28480337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials.
    Lai DY
    Food Chem Toxicol; 2015 Nov; 85():120-6. PubMed ID: 26111809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The current state of the art in research on engineered nanomaterials and terrestrial environments: Different-scale approaches.
    Kwak JI; An YJ
    Environ Res; 2016 Nov; 151():368-382. PubMed ID: 27540869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans.
    Callaghan NI; MacCormack TJ
    Comp Biochem Physiol C Toxicol Pharmacol; 2017 Mar; 193():30-41. PubMed ID: 28017784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants.
    Musee N; Thwala M; Nota N
    J Environ Monit; 2011 May; 13(5):1164-83. PubMed ID: 21505709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NLRP3 inflammasome activation induced by engineered nanomaterials.
    Sun B; Wang X; Ji Z; Li R; Xia T
    Small; 2013 May; 9(9-10):1595-607. PubMed ID: 23180683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aquatic Toxicity Effects and Risk Assessment of 'Form Specific' Product-Released Engineered Nanomaterials.
    Lehutso RF; Wesley-Smith J; Thwala M
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impacts of metal-based engineered nanomaterial mixtures on microbial systems: A review.
    Wu S; Gaillard JF; Gray KA
    Sci Total Environ; 2021 Aug; 780():146496. PubMed ID: 34030287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered nanomaterials-based sensing systems for assessing the freshness of meat and aquatic products: A state-of-the-art review.
    Duan X; Li Z; Wang L; Lin H; Wang K
    Compr Rev Food Sci Food Saf; 2023 Jan; 22(1):430-450. PubMed ID: 36451298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting nanomaterials pulmonary toxicity in animals by cell culture models: Achievements and perspectives.
    Di Ianni E; Jacobsen NR; Vogel U; Møller P
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2022 Nov; 14(6):e1794. PubMed ID: 36416018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A redox proteomics approach to investigate the mode of action of nanomaterials.
    Riebeling C; Wiemann M; Schnekenburger J; Kuhlbusch TA; Wohlleben W; Luch A; Haase A
    Toxicol Appl Pharmacol; 2016 May; 299():24-9. PubMed ID: 26827820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems.
    He X; Aker WG; Leszczynski J; Hwang HM
    J Food Drug Anal; 2014 Mar; 22(1):128-146. PubMed ID: 24673910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.