These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30273904)

  • 1. Accurate 13-C and 15-N molecular crystal chemical shielding tensors from fragment-based electronic structure theory.
    Hartman JD; Beran GJO
    Solid State Nucl Magn Reson; 2018 Dec; 96():10-18. PubMed ID: 30273904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragment-based (13)C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods.
    Hartman JD; Monaco S; Schatschneider B; Beran GJ
    J Chem Phys; 2015 Sep; 143(10):102809. PubMed ID: 26374002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography.
    Beran GJ; Hartman JD; Heit YN
    Acc Chem Res; 2016 Nov; 49(11):2501-2508. PubMed ID: 27754668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do Models beyond Hybrid Density Functionals Increase the Agreement with Experiment for Predicted NMR Chemical Shifts or Electric Field Gradient Tensors in Organic Solids?
    Iuliucci RJ; Hartman JD; Beran GJO
    J Phys Chem A; 2023 Mar; 127(12):2846-2858. PubMed ID: 36940431
    [No Abstract]   [Full Text] [Related]  

  • 5. Enhanced NMR Discrimination of Pharmaceutically Relevant Molecular Crystal Forms through Fragment-Based Ab Initio Chemical Shift Predictions.
    Hartman JD; Day GM; Beran GJ
    Cryst Growth Des; 2016 Nov; 16(11):6479-6493. PubMed ID: 27829821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing local structure in zeolite frameworks: ultrahigh-field NMR measurements and accurate first-principles calculations of zeolite 29Si magnetic shielding tensors.
    Brouwer DH; Enright GD
    J Am Chem Soc; 2008 Mar; 130(10):3095-105. PubMed ID: 18281985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragment-Based Electronic Structure Approach for Computing Nuclear Magnetic Resonance Chemical Shifts in Molecular Crystals.
    Hartman JD; Beran GJ
    J Chem Theory Comput; 2014 Nov; 10(11):4862-72. PubMed ID: 26584373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling NMR chemical shift: A survey of density functional theory approaches for calculating tensor properties.
    Sefzik TH; Turco D; Iuliucci RJ; Facelli JC
    J Phys Chem A; 2005 Feb; 109(6):1180-7. PubMed ID: 16833428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate fragment-based 51-V chemical shift predictions in molecular crystals.
    Mathews A; Hartman JD
    Solid State Nucl Magn Reson; 2021 Aug; 114():101733. PubMed ID: 34082261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting
    Hartman JD; Capistran D
    Magn Reson Chem; 2024 Jun; 62(6):416-428. PubMed ID: 38114304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of N-H...O and O-H...O hydrogen bonds on the (17)O, (15)N and (13)C chemical shielding tensors in crystalline acetaminophen: a density functional theory study.
    Esrafili MD; Behzadi H; Hadipour NL
    Biophys Chem; 2007 Jun; 128(1):38-45. PubMed ID: 17418477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-state NMR spectra and long intradimer bonds in the pi-[TCNE]22- dianion.
    Strohmeier M; Barich DH; Grant DM; Miller JS; Pugmire RJ; Simons J
    J Phys Chem A; 2006 Jun; 110(25):7962-9. PubMed ID: 16789786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmark accuracy of predicted NMR observables for quadrupolar
    Hartman JD; Spock LE; Harper JK
    Magn Reson Chem; 2023 Apr; 61(4):253-267. PubMed ID: 36567433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon-13 NMR shielding in the twenty common amino acids: comparisons with experimental results in proteins.
    Sun H; Sanders LK; Oldfield E
    J Am Chem Soc; 2002 May; 124(19):5486-95. PubMed ID: 11996591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes.
    VĂ­cha J; Patzschke M; Marek R
    Phys Chem Chem Phys; 2013 May; 15(20):7740-54. PubMed ID: 23598437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmark fragment-based (1)H, (13)C, (15)N and (17)O chemical shift predictions in molecular crystals.
    Hartman JD; Kudla RA; Day GM; Mueller LJ; Beran GJ
    Phys Chem Chem Phys; 2016 Aug; 18(31):21686-709. PubMed ID: 27431490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Electrostatic Embedding for Fragment-Based Chemical Shift Calculations in Molecular Crystals.
    Hartman JD; Balaji A; Beran GJO
    J Chem Theory Comput; 2017 Dec; 13(12):6043-6051. PubMed ID: 29139294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and computational characterization of the 17O quadrupole coupling and magnetic shielding tensors for p-nitrobenzaldehyde and formaldehyde.
    Wu G; Mason P; Mo X; Terskikh V
    J Phys Chem A; 2008 Feb; 112(5):1024-32. PubMed ID: 18193848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-state (13)C NMR chemical shift anisotropy tensors of polypeptides.
    Wei Y; Lee DK; Ramamoorthy A
    J Am Chem Soc; 2001 Jun; 123(25):6118-26. PubMed ID: 11414846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical shift tensors of protonated base carbons in helical RNA and DNA from NMR relaxation and liquid crystal measurements.
    Ying J; Grishaev A; Bryce DL; Bax A
    J Am Chem Soc; 2006 Sep; 128(35):11443-54. PubMed ID: 16939267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.