These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 30274039)
21. Characteristics of metals used in implants. Gotman I J Endourol; 1997 Dec; 11(6):383-9. PubMed ID: 9440845 [TBL] [Abstract][Full Text] [Related]
22. Electron Backscatter Diffraction and Transmission Kikuchi Diffraction Analysis of an Austenitic Stainless Steel Subjected to Surface Mechanical Attrition Treatment and Plasma Nitriding. Proust G; Retraint D; Chemkhi M; Roos A; Demangel C Microsc Microanal; 2015 Aug; 21(4):919-26. PubMed ID: 26139391 [TBL] [Abstract][Full Text] [Related]
23. Laser surface modification of 316L stainless steel. Balla VK; Dey S; Muthuchamy AA; Janaki Ram GD; Das M; Bandyopadhyay A J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):569-577. PubMed ID: 28245086 [TBL] [Abstract][Full Text] [Related]
24. Impact on the thrombogenicity of surface oxide properties of 316l stainless steel for biomedical applications. Shih CC; Shih CM; Su YY; Lin SJ J Biomed Mater Res A; 2003 Dec; 67(4):1320-8. PubMed ID: 14624519 [TBL] [Abstract][Full Text] [Related]
26. Ion implantation modified stainless steel as a substrate for hydroxyapatite deposition. Part I. Surface modification and characterization. Pramatarova L; Pecheva E; Krastev V; Riesz F J Mater Sci Mater Med; 2007 Mar; 18(3):435-40. PubMed ID: 17334693 [TBL] [Abstract][Full Text] [Related]
27. Cytocompatibility and Bone-Formation Potential of Se-Coated 316L Stainless Steel with Nano-Pit Arrays. Hu H; Cui R; Mei L; Ni S; Sun H; Zhang C; Ni S J Biomed Nanotechnol; 2018 Apr; 14(4):716-724. PubMed ID: 31352945 [TBL] [Abstract][Full Text] [Related]
29. Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli. Nan L; Xu D; Gu T; Song X; Yang K Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():228-34. PubMed ID: 25579918 [TBL] [Abstract][Full Text] [Related]
30. Preparation and characteristics of the sulfonated chitosan derivatives electrodeposited onto 316l stainless steel surface. Huang Y; Peng G; Chen B; Yong P; Yao N; Yang L; Pirraco RP; Reis RL; Chen J J Biomater Sci Polym Ed; 2018 Feb; 29(3):236-256. PubMed ID: 29171792 [TBL] [Abstract][Full Text] [Related]
31. Preparation and characterization of sol-gel hydroxyapatite and its electrochemical evaluation for biomedical applications. Vijayalakshmi U; Prabakaran K; Rajeswari S J Biomed Mater Res A; 2008 Dec; 87(3):739-49. PubMed ID: 18200538 [TBL] [Abstract][Full Text] [Related]
32. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern? Serhan H; Slivka M; Albert T; Kwak SD Spine J; 2004; 4(4):379-87. PubMed ID: 15246296 [TBL] [Abstract][Full Text] [Related]
33. High-manganese and nitrogen stabilized austenitic stainless steel (Fe-18Cr-22Mn-0.65N): a material with a bright future for orthopedic implant devices. Kumar CS; Singh G; Poddar S; Varshney N; Mahto SK; Podder AS; Chattopadhyay K; Rastogi A; Singh V; Mahobia GS Biomed Mater; 2021 Sep; 16(6):. PubMed ID: 34517359 [TBL] [Abstract][Full Text] [Related]
34. Electrical potentials between stent-grafts made from different metals induce negligible corrosion. Kazimierczak A; Podraza W; Lenart S; Wiernicki I; Gutowski P Eur J Vasc Endovasc Surg; 2013 Oct; 46(4):432-7. PubMed ID: 23867322 [TBL] [Abstract][Full Text] [Related]
35. Bioinspired surface functionalization of metallic biomaterials. Su Y; Luo C; Zhang Z; Hermawan H; Zhu D; Huang J; Liang Y; Li G; Ren L J Mech Behav Biomed Mater; 2018 Jan; 77():90-105. PubMed ID: 28898726 [TBL] [Abstract][Full Text] [Related]
36. Multifunctional zirconium nitride/copper multilayer coatings on medical grade 316L SS and titanium substrates for biomedical applications. Kumar DD; Kaliaraj GS J Mech Behav Biomed Mater; 2018 Jan; 77():106-115. PubMed ID: 28898721 [TBL] [Abstract][Full Text] [Related]
37. The Otto Aufranc Award: enhanced biocompatibility of stainless steel implants by titanium coating and microarc oxidation. Lim YW; Kwon SY; Sun DH; Kim YS Clin Orthop Relat Res; 2011 Feb; 469(2):330-8. PubMed ID: 20936386 [TBL] [Abstract][Full Text] [Related]
38. The surface modification of stainless steel and the correlation between the surface properties and protein adsorption. Kang CK; Lee YS J Mater Sci Mater Med; 2007 Jul; 18(7):1389-98. PubMed ID: 17277988 [TBL] [Abstract][Full Text] [Related]
39. Extracellular electron transfer of Bacillus cereus biofilm and its effect on the corrosion behaviour of 316L stainless steel. Li S; Li L; Qu Q; Kang Y; Zhu B; Yu D; Huang R Colloids Surf B Biointerfaces; 2019 Jan; 173():139-147. PubMed ID: 30278362 [TBL] [Abstract][Full Text] [Related]
40. Stainless steel surface biofunctionalization with PMMA-bioglass coatings: compositional, electrochemical corrosion studies and microbiological assay. Floroian L; Samoila C; Badea M; Munteanu D; Ristoscu C; Sima F; Negut I; Chifiriuc MC; Mihailescu IN J Mater Sci Mater Med; 2015 Jun; 26(6):195. PubMed ID: 26085116 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]