These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30274161)

  • 1. An Adaptive Zero Velocity Detection Algorithm Based on Multi-Sensor Fusion for a Pedestrian Navigation System.
    Ma M; Song Q; Gu Y; Li Y; Zhou Z
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30274161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on the Forward and Reverse Calculation Based on the Adaptive Zero-Velocity Interval Adjustment for the Foot-Mounted Inertial Pedestrian-Positioning System.
    Wang Q; Guo Z; Sun Z; Cui X; Liu K
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29883399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Zero-Velocity Interval Detection Algorithm for a Pedestrian Navigation System with Foot-Mounted Inertial Sensors.
    Wang X; Li J; Xu G; Wang X
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Method for Autonomous Multi-Motion Modes Recognition and Navigation Optimization for Indoor Pedestrian.
    Wang Z; Xiong Z; Xing L; Ding Y; Sun Y
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Pedestrian Navigation Algorithm for a Foot-Mounted Inertial-Sensor-Based System.
    Ren M; Pan K; Liu Y; Guo H; Zhang X; Wang P
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26805848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Zero Velocity Interval Detection Algorithm for Self-Contained Pedestrian Navigation System with Inertial Sensors.
    Tian X; Chen J; Han Y; Shang J; Li N
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27669266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Heuristic Drift Elimination with Adaptive Zero-Velocity Detection and Heading Correction Algorithms for Pedestrian Navigation.
    Zhu R; Wang Y; Yu B; Gan X; Jia H; Wang B
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32053884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel 3D Pedestrian Navigation Method for a Multiple Sensors-Based Foot-Mounted Inertial System.
    Yang W; Xiu C; Zhang J; Yang D
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29165377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Drift Reduction Methods in Foot-Mounted PDR System.
    Zhang W; Wei D; Yuan H
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foot-Mounted Pedestrian Navigation Method by Comparing ADR and Modified ZUPT Based on MEMS IMU Array.
    Xing L; Tu X; Chen Z
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32640628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smartphone Heading Correction Based on Gravity Assisted and Middle Time Simulated-Zero Velocity Update Method.
    Zeng Q; Zeng S; Liu J; Meng Q; Chen R; Huang H
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30301281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusion of Inertial/Magnetic Sensor Measurements and Map Information for Pedestrian Tracking.
    Bao SD; Meng XL; Xiao W; Zhang ZQ
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28208591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on an Improved Method for Foot-Mounted Inertial/Magnetometer Pedestrian-Positioning Based on the Adaptive Gradient Descent Algorithm.
    Wang Q; Yin J; Noureldin A; Iqbal U
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30477156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drift Reduction in Pedestrian Navigation System by Exploiting Motion Constraints and Magnetic Field.
    Ilyas M; Cho K; Baeg SH; Park S
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27618056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A zero velocity detection algorithm using inertial sensors for pedestrian navigation systems.
    Park SK; Suh YS
    Sensors (Basel); 2010; 10(10):9163-78. PubMed ID: 22163402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust Stride Detector from Ankle-Mounted Inertial Sensors for Pedestrian Navigation and Activity Recognition with Machine Learning Approaches.
    Beaufils B; Chazal F; Grelet M; Michel B
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31623248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Error Compensation Method for Pedestrian Navigation System Based on Low-Cost Inertial Sensor Array.
    Cao L; Luo X; Liu L; Wang G; Zhou J
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance Enhancement of Pedestrian Navigation Systems Based on Low-Cost Foot-Mounted MEMS-IMU/Ultrasonic Sensor.
    Xia M; Xiu C; Yang D; Wang L
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30658458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time Pedestrian Tracking Terminal Based on Adaptive Zero Velocity Update.
    Wei R; Xu H; Yang M; Yu X; Xiao Z; Yan B
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34072810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.