These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30274194)

  • 21. Privacy-Preserving Data Aggregation against False Data Injection Attacks in Fog Computing.
    Zhang Y; Zhao J; Zheng D; Deng K; Ren F; Zheng X; Shu J
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30104516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Practical Evaluation of a High-Security Energy-Efficient Gateway for IoT Fog Computing Applications.
    Suárez-Albela M; Fernández-Caramés TM; Fraga-Lamas P; Castedo L
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28850104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward IoT fog computing-enabled system energy consumption modeling and optimization by adaptive TCP/IP protocol.
    Masri A; Al-Jabi M
    PeerJ Comput Sci; 2021; 7():e653. PubMed ID: 34435098
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-Time Task Assignment Approach Leveraging Reinforcement Learning with Evolution Strategies for Long-Term Latency Minimization in Fog Computing.
    Mai L; Dao NN; Park M
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30150577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A source-controlled data center network model.
    Yu Y; Liang M; Wang Z
    PLoS One; 2017; 12(3):e0173442. PubMed ID: 28328925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy efficient service placement in fog computing.
    Vadde U; Kompalli VS
    PeerJ Comput Sci; 2022; 8():e1035. PubMed ID: 36092002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Architecting and Deploying IoT Smart Applications: A Performance-Oriented Approach.
    Zyrianoff I; Heideker A; Silva D; Kleinschmidt J; Soininen JP; Salmon Cinotti T; Kamienski C
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Hybrid Scheme for Fine-Grained Search and Access Authorization in Fog Computing Environment.
    Xiao M; Zhou J; Liu X; Jiang M
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28629131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing.
    Fan K; Wang J; Wang X; Li H; Yang Y
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28737733
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Smart Collaborative Caching for Information-Centric IoT in Fog Computing.
    Song F; Ai ZY; Li JJ; Pau G; Collotta M; You I; Zhang HK
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29104219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks.
    Shen Y; Hattink MHN; Samadi P; Cheng Q; Hu Z; Gazman A; Bergman K
    Opt Express; 2018 Apr; 26(8):10914-10929. PubMed ID: 29716021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fog Computing: Enabling the Management and Orchestration of Smart City Applications in 5G Networks.
    Santos J; Wauters T; Volckaert B; De Turck F
    Entropy (Basel); 2017 Dec; 20(1):. PubMed ID: 33265095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Delay reduction in MTC using SDN based offloading in Fog computing.
    Arefian Z; Khayyambashi MR; Movahhedinia N
    PLoS One; 2023; 18(5):e0286483. PubMed ID: 37252914
    [TBL] [Abstract][Full Text] [Related]  

  • 34. QoS Aware and Fault Tolerance Based Software-Defined Vehicular Networks Using Cloud-Fog Computing.
    Syed SA; Rashid M; Hussain S; Azim F; Zahid H; Umer A; Waheed A; Zareei M; Vargas-Rosales C
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulating IoT Workflows in DISSECT-CF-Fog.
    Markus A; Al-Haboobi A; Kecskemeti G; Kertesz A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Practical Evaluation on RSA and ECC-Based Cipher Suites for IoT High-Security Energy-Efficient Fog and Mist Computing Devices.
    Suárez-Albela M; Fraga-Lamas P; Fernández-Caramés TM
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Achieving Low Latency Communications in Smart Industrial Networks with Programmable Data Planes.
    Atutxa A; Franco D; Sasiain J; Astorga J; Jacob E
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fog Computing and Edge Computing Architectures for Processing Data From Diabetes Devices Connected to the Medical Internet of Things.
    Klonoff DC
    J Diabetes Sci Technol; 2017 Jul; 11(4):647-652. PubMed ID: 28745086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Dynamic Plane Prediction Method Using the Extended Frame in Smart Dust IoT Environments.
    Park J; Park K
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32131480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Software architecture for pervasive critical health monitoring system using fog computing.
    Ilyas A; Alatawi MN; Hamid Y; Mahfooz S; Zada I; Gohar N; Shah MA
    J Cloud Comput (Heidelb); 2022; 11(1):84. PubMed ID: 36465318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.