These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30274383)

  • 41. High-efficiency and low-energy ship recognition strategy based on spiking neural network in SAR images.
    Xie H; Jiang X; Hu X; Wu Z; Wang G; Xie K
    Front Neurorobot; 2022; 16():970832. PubMed ID: 36119716
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Signal Processing and Target Fusion Detection via Dual Platform Radar Cooperative Illumination.
    Wang H; Tang Z; Zhao Y; Chen Y; Zhu Z; Zhang Y
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817145
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fine-Grained Ship Recognition from the Horizontal View Based on Domain Adaptation.
    Sun S; Gu Y; Ren M
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590933
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection.
    Kim S; Song WJ; Kim SH
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27447635
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improved FBAM and GO/PO Method for EM Scattering Analyses of Ship Targets in a Marine Environment.
    Li J; Zhang M; Jiang W; Wei P
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825757
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthetic Aperture Radar Processing Approach for Simultaneous Target Detection and Image Formation.
    Pei J; Huang Y; Huo W; Miao Y; Zhang Y; Yang J
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30308993
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An innovative methodological approach in the frame of Marine Strategy Framework Directive: a statistical model based on ship detection SAR data for monitoring programmes.
    Pieralice F; Proietti R; La Valle P; Giorgi G; Mazzolena M; Taramelli A; Nicoletti L
    Mar Environ Res; 2014 Dec; 102():18-35. PubMed ID: 25096752
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ship Detection for Optical Remote Sensing Images Based on Visual Attention Enhanced Network.
    Bi F; Hou J; Chen L; Yang Z; Wang Y
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31100909
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Automatic Censoring CFAR Detector Based on Ordered Data Difference for Low-Flying Helicopter Safety.
    Jiang W; Huang Y; Yang J
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27399714
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ship Segmentation in SAR Images by Improved Nonlocal Active Contour Model.
    Zhang X; Xiong B; Dong G; Kuang G
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513759
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Change Detection in Synthetic Aperture Radar Images Based on a Generalized Gamma Deep Belief Networks.
    Jia M; Zhao Z
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960383
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MW-ACGAN: Generating Multiscale High-Resolution SAR Images for Ship Detection.
    Zou L; Zhang H; Wang C; Wu F; Gu F
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233434
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Offshore Platform Extraction Using RadarSat-2 SAR Imagery: A Two-Parameter CFAR Method Based on Maximum Entropy.
    Wang Q; Zhang J; Su F
    Entropy (Basel); 2019 Jun; 21(6):. PubMed ID: 33267270
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Anti-FOD Method Based on CA-CM-CFAR for MMW Radar in Complex Clutter Background.
    Yang X; Huo K; Su J; Zhang X; Jiang W
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183386
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Novel Ship-Tracking Method for GF-4 Satellite Sequential Images.
    Yao L; Liu Y; He Y
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29932145
    [TBL] [Abstract][Full Text] [Related]  

  • 56. GMTI for Squint Looking XTI-SAR with Rotatable Forward-Looking Array.
    Jing K; Xu J; Huang Z; Yao D; Long T
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27314350
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Statistical-physical model for foliage clutter in ultra-wideband synthetic aperture radar images.
    Banerjee A; Chellappa R
    J Opt Soc Am A Opt Image Sci Vis; 2003 Jan; 20(1):32-9. PubMed ID: 12542316
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Target discrimination in synthetic aperture radar using artificial neural networks.
    Principe JC; Kim M; Fisher M
    IEEE Trans Image Process; 1998; 7(8):1136-49. PubMed ID: 18276330
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Subspace Compressive GLRT Detector for MIMO Radar in the Presence of Clutter.
    Bolisetti SK; Patwary M; Ahmed K; Soliman AH; Abdel-Maguid M
    ScientificWorldJournal; 2015; 2015():341619. PubMed ID: 26495422
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Research on Strong Clutter Suppression for Gaofen-3 Dual-Channel SAR/GMTI.
    Zheng M; Yan H; Zhang L; Yu W; Deng Y; Wang R
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29587437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.